36 research outputs found

    Interleukin-17 and Its Implication in the Regulation of Differentiation and Function of Hematopoietic and Mesenchymal Stem Cells

    Get PDF
    Adult stem cells have a great potential applicability in regenerative medicine and cell-based therapies. However, there are still many unresolved issues concerning their biology, and the influence of the local microenvironment on properties of stem cells has been increasingly recognized. Interleukin (IL-) 17, as a cytokine implicated in many physiological and pathological processes, should be taken into consideration as a part of a regulatory network governing tissue-associated stem cells' fate. This review is focusing on the published data on the effects of IL-17 on the properties and function of hematopoietic and mesenchymal stem cells and trying to discuss that IL-17 achieves many of its roles by acting on adult stem cells

    Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development

    Get PDF
    Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer

    Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators

    Get PDF
    Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy

    Adipogenesis in Different Body Depots and Tumor Development

    Get PDF
    Adipose tissue (AT) forms depots at different anatomical locations throughout the body, being in subcutaneous and visceral regions, as well as the bone marrow. These ATs differ in the adipocyte functional profile, their insulin sensitivity, adipokines' production, lipolysis, and response to pathologic conditions. Despite the recent advances in lineage tracing, which have demonstrated that individual adipose depots are composed of adipocytes derived from distinct progenitor populations, the cellular and molecular dissection of the adipose clonogenic stem cell niche is still a great challenge. Additional complexity in AT regulation is associated with tumor-induced changes that affect adipocyte phenotype. As an integrative unit of cell differentiation, AT microenvironment regulates various phenotype outcomes of differentiating adipogenic lineages, which consequently may contribute to the neoplastic phenotype manifestations. Particularly interesting is the capacity of AT to impose and support the aberrant potency of stem cells that accompanies tumor development. In this review, we summarize the current findings on the communication between adipocytes and their progenitors with tumor cells, pointing out to the co-existence of healthy and neoplastic stem cell niches developed during tumor evolution. We also discuss tumor-induced adaptations in mature adipocytes and the involvement of alternative differentiation programs

    Dental mesenchymal stromal/stem cells in different microenvironments — implications in regenerative therapy

    Get PDF
    Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells

    The Roles of Mesenchymal Stromal/Stem Cells in Tumor Microenvironment Associated with Inflammation

    Get PDF
    State of tumor microenvironment (TME) is closely linked to regulation of tumor growth and progression affecting the final outcome, refractoriness, and relapse of disease. Interactions of tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. Due to their outstanding features, stem cell-like properties, capacity to regulate immune response, and dynamic functional phenotype dependent on microenvironmental stimuli, MSCs have been perceived as important players in TME. Signals provided by tumor-associated chronic inflammation educate MSCs to alter their phenotype and immunomodulatory potential in favor of tumor-biased state of MSCs. Adjustment of phenotype to TME and acquisition of tumor-promoting ability byMSCs help tumor cells inmaintenance of permissive TME and suppression of antitumor immune response. Potential utilization of MSCs in treatment of tumor is based on their inherent ability to home tumor tissue that makes them suitable delivery vehicles for immune-stimulating factors and vectors for targeted antitumor therapy. Here, we review data regarding intrusive effects of inflammatory TME on MSCs capacity to affect tumor development through modification of their phenotype and interactions with immune system

    Tumorigenic Aspects of MSC Senescence—Implication in Cancer Development and Therapy

    Get PDF
    As an organism ages, many physiological processes change, including the immune system. This process, called immunosenescence, characterized by abnormal activation and imbalance of innate and adaptive immunity, leads to a state of chronic low-grade systemic inflammation, termed inflammaging. Aging and inflammaging are considered to be the root of many diseases of the elderly, as infections, autoimmune and chronic inflammatory diseases, degenerative diseases, and cancer. The role of mesenchymal stromal/stem cells (MSCs) in the inflammaging process and the age-related diseases is not completely established, although numerous features of aging MSCs, including altered immunomodulatory properties, impeded MSC niche supporting functions, and senescent MSC secretory repertoire are consistent with inflammaging development. Although senescence has its physiological function and can represent a mechanism of tumor prevention, in most cases it eventually transforms into a deleterious (para-)inflammatory process that promotes tumor growth. In this review we are going through current literature, trying to explore the role of senescent MSCs in making and/or sustaining a microenvironment permissive to tumor development and to analyze the therapeutic options that could target this process

    Mesenchymal stem cells isolated from human periodontal ligament

    Get PDF
    Mesenchymal stem cells (MSCs) were isolated from human periodontal ligament (hPDL-MSCs) and characterized by their morphology, clonogenic efficiency, proliferation and differentiation capabilities. hPDL-MSCs, derived from normal impacted third molars, possessed all of the properties of MSC, including clonogenic ability, high proliferation rate and multi-lineage (osteogenic, chondrogenic, adipogenic, myogenic) differentiation potential. Moreover, hPDL-MSCs expressed a typical MSC epitope profile, being positive for mesenchymal cell markers (CD44H, CD90, CD105, CD73, CD29, Stro-1, fibronectin, vimentin, alpha-SMA), and negative for hematopoietic stem cell markers (CD34, CD11b, CD45, Glycophorin-CD235a). Additionally, hPDL-MSCs, as primitive and highly multipotent cells, showed high expression of embryonic markers (Nanog, Sox2, SSEA4). The data obtained provided yet further proof that cells with mesenchymal properties can be obtained from periodontal ligament tissue. Although these cells should be further investigated to determine their clinical significance, hPDL-MSCs are believed to provide a renewable and promising cell source for new therapeutic strategies in the treatment of periodontal defects

    Immunomodulatory capacity of human mesenchymal stem cells isolated from adipose tissue, dental pulp, peripheral blood and umbilical cord Wharton's jelly

    Get PDF
    Mesenchymal stem cells (MSCs), beside regenerative potential, possess immunomodulatory properties and their use in managing immune-mediated diseases is intensively studied. We analyzed the effects of MSCs isolated from human adipose tissue (AT-MSCs), dental pulp (DP-MSCs), peripheral blood (PB-MSCs) and umbilical cord Wharton's jelly (UC-MSCs), on the proliferation of allogeneic peripheral blood mononuclear cells (PBMCs). While only AT-MSCs functioned as alloantigen presenting cells, proliferation of PBMCs in response to a phytohemagglutinin (PHA) and alloantigens in mixed lymphocytes reaction (MLR) was inhibited by all MSCs in a cell concentration-dependent manner. Conditioned medium (CM) derived from DP-MSCs, PB-MSCs and UC-MSCs, suppressed the baseline, PHA- and alloantigens-mediated proliferation of PBMC, whereas AT-MSCs-derived CM inhibited MLR, but failed to suppress the spontaneous and PHA-induced PBMCs proliferation. Differences between MSC types were observed in expression of genes related to immunomodulation, including human leukocyte antigens (HLA)-A, HLA-DR, HLA-G5, interleukin 6 (IL)-6, transforming growth factor (TGF)-beta, cyclooxygenase-2 (COX-2) and indoleamine 2,3-dioxygenase (IDO-1), under basal conditions, as well as in response to proinflammatory cytokines, interferon (IFN)-gamma and tumor necrosis factor alpha (TNF)-alpha. While AT-MSCs showed a positive constitutive expression of almost all tested genes that was augmented in response to IFN-gamma and TNF-alpha, only combined cytokine treatment increased HLA-A, COX2 and IL-6 mRNA expression in DP-MSCs and slightly stimulated the expression of HLA-G and TGF-beta in UC-MSCs. Although MSCs from different tissues showed similar potential to suppress proliferation of PBMCs, heterogeneity in the expression of genes related to immunomodulation emphasizes the importance of investigating the role of specific molecular mechanisms in the regulation of immunomodulatory activity of MSCs

    Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation

    Get PDF
    Interleukin 17 (IL-17) is a cytokine with pleiotropic effects associated with several inflammatory diseases. Although elevated levels of IL-17 have been described in inflammatory myopathies, its role in muscle remodeling and regeneration is still unknown. Excessive extracellular matrix degradation in skeletal muscle is an important pathological consequence of many diseases involving muscle wasting. In this study, the role of IL-17 on the expression of matrix metalloproteinase- (MMP-) 9 inmyoblast cells was investigated. The expression of MMP-9 after IL-17 treatment was analyzed in mouse myoblasts C2C12 cell line. The increase in MMP-9 production by IL-17 was concomitant with its capacity to inhibit myogenic differentiation of C2C12 cells. Doxycycline (Doxy) treatment protected the myogenic capacity of myoblasts from IL-17 inhibition and, moreover, increased myotubes hypertrophy. Doxy blocked the capacity of IL-17 to stimulateMMP-9 production by regulating IL-17-induced ERK1/2 MAPK activation. Our results imply that MMP-9 mediates IL-17's capacity to inhibit myoblast differentiation during inflammatory diseases and indicate that Doxy can modulate myoblast response to inflammatory induction by IL-17
    corecore