110 research outputs found
Cis-9,trans-11-konjugierte Linolsäure hemmt entzündliche Prozesse in Asthmamodellen in vitro und in vivo
In der vorliegenden Arbeit wurde die Hypothese geprüft, ob c9,t11-CLA als natürlicherweise in Milch vorkommende Fettsäure über eine entzündungshemmende Wirkung via PPARγ zum präventiven Effekt von (Voll-)Milch auf die Entstehung von allergischem Asthma bronchiale beiträgt. Hierzu wurden zunächst in vitro die Effekte einer Intervention mit c9,t11-CLA auf asthmaassoziierte entzündliche Prozesse in humanen Brochialepithelzellen (BEAS-2B) und Eosinophilen von allergischen Spendern evaluiert. Im zweiten Teil wurde in einem Mausmodell (BALB/c) geprüft, ob die Gabe einer c9,t11-CLA-reichen Diät die Ausbildung einer allergischen Atemwegshyperreaktivität und -entzündung sowohl primärpräventiv als auch sekundärpräventiv inhibiert. Die Ergebnisse dieser Arbeit weisen darauf hin, dass c9,t11-CLA über einen dualen Mechanismus (via PPARγ-vermittelte Hemmung der Th2-assoziierten Immunantwort und Reduktion der n6-PUFA in den Körpergeweben) eine antiinflammatorische Wirkung entfaltet. Zukünftig könnte die Supplementation mit c9,t11-CLA als therapieunterstützende Maßnahme eine attraktive Strategie in der Behandlung von allergischem Bronchialasthma darstellen
Fatty acid distribution of cord and maternal blood in human pregnancy: special focus on individual trans fatty acids and conjugated linoleic acids
<p>Abstract</p> <p>Background</p> <p>Maternal nutrition in pregnancy has a crucial impact on the development of the fetus. Dietary <it>trans </it>fatty acids (<it>t</it>FA) are known to have adverse health effects, especially during pregnancy. However, the distribution of <it>t</it>FA produced via partial hydrogenation of vegetable oils (mainly elaidic acid; <it>t</it>9) differs compared to ruminant-derived <it>t</it>FA (mainly vaccenic acid; <it>t</it>11). Recent findings indicate that they may have different impact on human health.</p> <p>Therefore, in this study, plasma and erythrocytes of mother-child pairs (n = 55) were sampled to investigate the distribution of <it>t</it>FA, including individual <it>trans </it>C18:1 fatty acids and conjugated linoleic acids (CLA) in fetal related to maternal lipids; with additional consideration of maternal dairy fat intake.</p> <p>Results</p> <p>Portion of <it>t</it>9 and <it>t</it>11, but also of <it>c</it>9,<it>t</it>11 CLA was higher in maternal than in fetal blood lipids. The portion of <it>t</it>9 in maternal and fetal lipids differed only slightly. In contrast, the portion of fetal <it>t</it>11 was only half of that in maternal blood. This led to a fetal <it>t</it>9/<it>t</it>11-index in plasma and erythrocytes being twice as high compared to the maternal values. A high dairy fat intake resulted in elevated portions of <it>t</it>11 and its Δ9-desaturation product <it>c</it>9,<it>t</it>11 CLA in maternal blood. In contrast, in the respective fetal blood lipids only <it>c</it>9,<it>t</it>11 CLA, but not <it>t</it>11 was increased. Nevertheless, a positive association between maternal and fetal plasma exists for both <it>t</it>11 and <it>c</it>9,<it>t</it>11 CLA. Furthermore, in contrast to <it>t</it>9, <it>t</it>11 was not negatively associated with n-3 LC-PUFA in fetal blood lipids.</p> <p>Conclusions</p> <p>Fetal blood fatty acid composition essentially depends on and is altered by the maternal fatty acid supply. However, in addition to dietary factors, other aspects also contribute to the individual fatty acid distribution (oxidation, conversion, incorporation). The lower portion of fetal <it>t</it>11 compared to maternal <it>t</it>11, possibly results from Δ9-desaturation to <it>c</it>9,<it>t</it>11 CLA and/or oxidation. Based on the fatty acid distribution, it can be concluded that <it>t</it>11 differs from <it>t</it>9 regarding its metabolism and their impact on fetal LC-PUFA.</p
Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats
Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases
Searching for health beneficial n-3 and n-6 fatty acids in plant seeds
Various plant seeds have received little attention in fatty acid research. Seeds from 30 species mainly of Boraginaceae and Primulaceae were analysed in order to identify potential new sources of the n-3 PUFA α-linolenic acid (ALA) and stearidonic acid (SDA) and of the n-6 PUFA γ-linolenic acid (GLA). The fatty acid distribution differed enormously between genera of the same family. Echium species (Boraginaceae) contained the highest amount of total n-3 PUFA (47.1%), predominantly ALA (36.6%) and SDA (10.5%) combined with high GLA (10.2%). Further species of Boraginaceae rich in both SDA and GLA were Omphalodes linifolia (8.4, 17.2%, resp.), Cerinthe minor (7.5, 9.9%, resp.) and Buglossoides purpureocaerulea (6.1, 16.6%, resp.). Alkanna species belonging to Boraginaceae had comparable amounts of ALA (37.3%) and GLA (11.4%) like Echium but lower SDA contents (3.7%). Different genera of Primulaceae (Dodecatheon and Primula) had varying ALA (14.8, 28.8%, resp.) and GLA portions (4.1, 1.5%, resp.), but similar amounts of SDA (4.9, 4.5%, resp.). Cannabis sativa cultivars (Cannabaceae) were rich in linoleic acid (57.1%), but poor in SDA and GLA (0.8, 2.7%, resp.). In conclusion, several of the presented plant seeds contain considerable amounts of n-3 PUFA and GLA, which could be relevant for nutritional purposes due to their biological function as precursors for eicosanoid synthesis
Recommended from our members
Effect of a whey protein and rapeseed oil gel feed supplement on milk fatty acid composition of Holstein cows
Isoenergetic replacement of dietary saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) can reduce cardiovascular disease (CVD) risk. Supplementing dairy cow diets with plant oils lowers milk fat SFA concentrations. However, this feeding strategy can also increase milk fat trans FA (TFA), and negatively impact rumen fermentation. Protection of oil supplements from the rumen environment is therefore needed. In the present study a whey protein gel (WPG) of rapeseed oil (RO) was produced for feeding to dairy cows, in two experiments. In Experiment 1 four multiparous Holstein-Friesian cows in mid-lactation were used in a change-over experiment, with 8-d treatment periods separated by a 5-day washout period. Total mixed ration diets containing 420 g RO or WPG providing 420 g of RO were fed and the effects on milk production, composition and FA concentration were measured. Experiment 2 involved four multiparous mid-lactation Holstein-Friesian cows in a 4 x 4 Latin square design experiment, with 28-d periods, to investigate the effect of incremental dietary inclusion (0, 271, 617 and 814 g/d supplemental oil) of WPG on milk production, composition and FA concentration in the last week of each period. There were minimal effects of WPG on milk FA profile in experiment 1, but trans-18:1 and total trans-MUFA were higher after 8 days of supplementation with RO than with WPG. Incremental diet inclusion of WPG in experiment 2 resulted in linear increases in milk yield, cis- and trans-MUFA and PUFA, and linear decreases in SFA (from 73 to 58 g/100 g FA), and milk fat concentration. The WPG supplement was effective at decreasing milk SFA concentration by replacement with MUFA and PUFA in experiment 2, but the increase in TFA suggested that protection was incomplete
Effect of Tween Series on Growth and cis-9, trans-11 Conjugated Linoleic Acid Production of Lactobacillus acidophilus F0221 in the Presence of Bile Salts
Cis-9, trans-11 conjugated linoleic acid (c9, t11 CLA) producing bacteria have attracted much attention as novel probiotics which have shown beneficial effects on host health. However, bile salts are able to inhibit bacterial growth and c9, t11 CLA production. For recovering growth and c9, t11 CLA production of Lactobacillus acidophilus F0221 in the presence of bile salts, Tween series (Tween 20, Tween 40, Tween 60 and Tween 80) were added in growth culture containing 0.3% oxgall. Results showed that the viable counts were significantly (P < 0.05) recovered to 8.58–8.75 log CFU/mL in the presence of all Tween treatments. However, recovery of c9, t11 CLA production was only demonstrated in the presence of Tween 80 (72.89 μg/mL). Stepwise increasing oxgall in a concentrations range from 0.1% to 0.9% according to human intestinal physiological environments, Tween 80 still showed significant (P < 0.05) recovery ability on growth (8.91–8.04 log CFU/mL) and c9, t11 CLA (69.22–34.27 μg/mL) production. The effect of Tween 80 on growth and production was also investigated in the presence of different types of bile salts (sodium salts of cholic acid (CA), deoxycholic acid (DCA), chendeoxycholic acid (CDCA), glycocholic acid (GCA) and taurocholic acid (TCA)). Results showed that Tween 80 could significantly (P < 0.05) recover c9, t11 CLA production in the presence of all types of bile salts, but the Tween 80 could only significantly (P < 0.05) recover viable counts of the strain in the presence of CA, DCA and CDCA. This recovery ability could be attributed to the protection of leakage of intracellular material. Additionally, although bile salts inhibited growth and c9, t11 CLA production by the growing cell, it promoted the c9, t11 CLA production by the resting cell
Isomer specificity of conjugated linoleic acid (CLA): 9E,11E-CLA
Conjugated linoleic acids (CLA) were identified in 1980's, since then it has been intensively studied due to its various beneficial health effects such as anti-inflammatory, anti-atherogenic, anti-carcinogenic and anti-diabetic/obesity effects. Isomer specificity of a number of CLA isomers, especially predominant isomer 9Z,11E- and 10E,12Z-CLA, is now recognized. However, the less prevalent CLA isomers have not been well characterized. Recently, studies have reported the distinctively different effects of 9E,11E-CLA in colon cancer cells, endothelial cells, and macrophage cells compared to the rest of CLA isomers. In this review, various effects of CLAs, especially anti-inflammatory and anti-atherogenic effects, will be discussed with focusing on the isomer-specific effects and potential mechanism of action of CLA. At last, recent studies about 9E,11E-CLA in in vitro and animal models will be discussed
Postprandial changes in gastrointestinal function and transit in cystic fibrosis assessed by Magnetic Resonance Imaging
BackgroundCystic fibrosis (CF) is a multi-system genetic disorder affecting >72,000 people worldwide. Most CF patients experience gastrointestinal symptoms and can develop complications. However, the mechanisms of CF gut disease are not well understood. We evaluated gut function and transit in CF using magnetic resonance imaging (MRI). We hypothesised oro-caecal transit time (OCTT) is longer in CF; with lower small bowel water content (SBWC).MethodsTwelve CF patients aged 12–40 years and 12 age and sex-matched controls underwent serial MRIs over 1 day with standardised meals. The primary endpoint was OCTT, assessed by the appearance of a food bolus in the caecum. Other measures included corrected SBWC and corrected colonic volume (both area under the curve, AUC), gastric half-emptying time and gastrointestinal symptoms.ResultsOCTT was longer in CF (CF 330 mins [270, >360] vs. controls 210 mins [173, 315], p = 0.04), with no difference in gastric half-emptying times. Corrected SBWC was higher in CF (CF 62 L.min/m2 [36, 80] vs. controls 34 L.min/m2 [28, 41], p = 0.021); minimal postprandial decrease between T240 and T300 (CF 13 mL/m2 [-13, 57] vs. controls 102 mL/m2 [67, 108], p = 0.002) suggests impaired ileal emptying. Corrected colonic volumes were higher in CF (CF 186 L.min/m2 [167, 206] vs. controls 123 L.min/m2 [89, 146], p = 0.012). There were no differences in gastrointestinal symptoms.ConclusionsMRI provides novel insights into CF pathophysiology. Sub-clinical ileal obstruction may be more prevalent than previously thought. Gastrointestinal MRI shows promise as an investigational tool in CF
Interleukin-6 and Cyclooxygenase-2 downregulation by fatty-acid fractions of Ranunculus constantinopolitanus
<p>Abstract</p> <p>Background</p> <p>Medicinal plants represent alternative means for the treatment of several chronic diseases, including inflammation. The genus <it>Ranunculus</it>, a representative of the Ranunculaceae family, has been reported to possess anti-inflammatory, analgesic, antiviral, antibacterial, antiparasitic and antifungal activities, possibly due to the presence of anemonin and other. Different studies have shown the occurrence of unusual fatty acids (FAs) in Ranunculaceae; however, their therapeutic role has not been investigated. The purpose of this study is to characterize potential anti-inflammatory bioactivities in <it>Ranunculus constantinopolitanus </it>D'Urv., traditionally used in Eastern Mediterranean folk medicine.</p> <p>Methods</p> <p>The aerial part of <it>R. constantinopolitanus </it>was subjected to methanol (MeOH) extraction and solvent fractionation. The bioactive fraction (I.2) was further fractionated using column chromatography, and the biologically active subfraction (Y<sub>2+3</sub>) was identified using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The effects of I.2 and Y<sub>2+3 </sub>on cell viability were studied in mouse mammary epithelial SCp2 cells using trypan blue exclusion method. To study the anti-inflammatory activities of I.2 and Y<sub>2+3</sub>, their ability to reduce interleukin (IL)-6 levels was assessed in endotoxin (ET)-stimulated SCp2 cells using enzyme-linked immunosorbent assay (ELISA). In addition, the ability of Y<sub>2+3 </sub>to reduce cyclooxygenase (COX)-2 expression was studied in IL-1-treated mouse intestinal epithelial Mode-K cells via western blotting. Data were analyzed by one-way analysis of variance (ANOVA), Student-Newman-Keuls (SNK), Tukey HSD, two-sample t-test and Dunnett t-tests for multiple comparisons.</p> <p>Results</p> <p>The chloroform fraction (I.2) derived from crude MeOH extract of the plant, in addition to Y<sub>2+3</sub>, a FA mix isolated from this fraction and containing palmitic acid, C18:2 and C18:1 isomers and stearic acid (1:5:8:1 ratio), reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA) and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio), Y<sub>2+3 </sub>exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y<sub>2+3</sub> also reduced COX-2 expression in IL-1-treated Mode-K cells.</p> <p>Conclusion</p> <p>Our studies demonstrate the existence of potential anti-inflammatory bioactivities in <it>R. constantinopolitanus </it>and attribute them to a FA mix in this plant.</p
- …