122 research outputs found

    Accumulation of rare coding variants in genes implicated in risk of human cleft lip with or without cleft palate.

    Get PDF
    Cleft lip with/without cleft palate (CLP) is a common craniofacial malformation with complex etiologies, reflecting both genetic and environmental factors. Most of the suspected genetic risk for CLP has yet to be identified. To further classify risk loci and estimate the contribution of rare variants, we sequenced the exons in 49 candidate genes in 323 CLP cases and 211 nonmalformed controls. Our findings indicated that rare, protein-altering variants displayed markedly higher burdens in CLP cases at relevant loci. First, putative loss-of-function mutations (nonsense, frameshift) were significantly enriched among cases: 13 of 323 cases (~4%) harbored such alleles within these 49 genes, versus one such change in controls (p = 0.01). Second, in gene-level analyses, the burden of rare alleles showed greater case-association for several genes previously implicated in cleft risk. For example, BHMT displayed a 10-fold increase in protein-altering variants in CLP cases (p = .03), including multiple case occurrences of a rare frameshift mutation (K400 fs). Other loci with greater rare, coding allele burdens in cases were in signaling pathways relevant to craniofacial development (WNT9B, BMP4, BMPR1B) as well as the methionine cycle (MTRR). We conclude that rare coding variants may confer risk for isolated CLP

    Co-Evolution of Transcriptional Silencing Proteins and the DNA Elements Specifying Their Assembly

    Get PDF
    Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1) proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.National Science Foundation (U.S.) (GM31105)National Science Foundation (U.S.) (Predoctoral Fellowships

    Function-Altering SNPs in the Human Multidrug Transporter Gene ABCB1 Identified Using a Saccharomyces-Based Assay

    Get PDF
    The human ABCB1 (MDR1)-encoded multidrug transporter P-glycoprotein (P-gp) plays a major role in disposition and efficacy of a broad range of drugs including anticancer agents. ABCB1 polymorphisms could therefore determine interindividual variability in resistance to these drugs. To test this hypothesis we developed a Saccharomyces-based assay for evaluating the functional significance of ABCB1 polymorphisms. The P-gp reference and nine variants carrying amino-acid–altering single nucleotide polymorphisms (SNPs) were tested on medium containing daunorubicin, doxorubicin, valinomycin, or actinomycin D, revealing SNPs that increased (M89T, L662R, R669C, and S1141T) or decreased (W1108R) drug resistance. The R669C allele's highly elevated resistance was compromised when in combination with W1108R. Protein level or subcellular location of each variant did not account for the observed phenotypes. The relative resistance profile of the variants differed with drug substrates. This study established a robust new methodology for identification of function-altering polymorphisms in human multidrug transporter genes, identified polymorphisms affecting P-gp function, and provided a step toward genotype-determined dosing of chemotherapeutics

    The Enigmatic Conservation of a Rap1 Binding Site in the Saccharomyces cerevisiae HMR-E Silencer

    Get PDF
    Silencing at the HMR and HML loci in Saccharomyces cerevisiae requires recruitment of Sir proteins to the HML and HMR silencers. The silencers are regulatory sites flanking both loci and consisting of binding sites for the Rap1, Abf1, and ORC proteins, each of which also functions at hundreds of sites throughout the genome in processes unrelated to silencing. Interestingly, the sequence of the binding site for Rap1 at the silencers is distinct from the genome-wide binding profile of Rap1, being a weaker match to the consensus, and indeed is bound with low affinity relative to the consensus sequence. Remarkably, this low-affinity Rap1 binding site variant was conserved among silencers of the sensu stricto Saccharomyces species, maintained as a poor match to the Rap1 genome-wide consensus sequence in all of them. We tested multiple predictions about the possible role of this binding-site variant in silencing by substituting the native Rap1 binding site at the HMR-E silencer with the genome-wide consensus sequence for Rap1. Contrary to the predictions from the current models of Rap1, we found no influence of the Rap1 binding site version on the kinetics of establishing silencing, nor on the maintenance of silencing, nor the extent of silencing. We further explored implications of these findings with regard to prevention of ectopic silencing, and deduced that the selective pressure for the unprecedented conservation of this binding site variant may not be related to silencing.National Science Foundation (U.S.) (Predoctoral Fellowship)National Institutes of Health (U.S.) (Grant GM31105

    Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4.</p> <p>Results</p> <p>Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC). While mutational inactivation of the histone acetyltransferase (HAT) gene <it>HAT1 </it>alone does not compromise origin firing or initiation of DNA replication, a deletion in <it>HAT1 </it>(or <it>HAT2</it>) exacerbates the growth defects of conditional <it>orc-ts </it>mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork.</p> <p>Conclusion</p> <p>We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p). The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.</p
    corecore