47 research outputs found

    Genetically modified tumour cells expressing IL-15 and IL-15Ralpha as an in situ cancer vaccination platform

    No full text
    Interleukin-15 (IL-15) is a pleiotropic cytokinewith the ability to increase the effectiveness ofvaccines through enhancement of both innateand adaptive immune responses

    Microrna-regulated gene delivery systems for research and therapeutic purposes

    No full text
    Targeted gene delivery relies on the ability to limit the expression of a transgene within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective regulators of gene expression that act by binding to a specific sequence present in the corresponding messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery platforms with a diverse range of applications. Here, we summarize studies that have utilized miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic purposes. Additionally, we identify criteria that are important for the effectiveness of a particular miRNA for such applications and we also discuss factors that have to be taken into consideration when designing miRNA-regulated expression cassettes. © 2018 by the authors

    Synergistic and independent action of endogenous microRNAs 122a and 199a for post-transcriptional liver detargeting of gene vectors

    No full text
    In hepatocellular carcinoma (HCC), which usually develops in a cirrhotic liver, treatments preserving normal liver function and viability are vitally important. Here, we utilise the differential expression of miRNAs 122a and 199a between normal hepatocytes and HCC to generate vectors harbouring their binding sites for hepatocyte detargeting. Using a reporter gene, we observed a synergistic detargeting of cells expressing both miRNAs as well as cells expressing either of the miRNAs; while expression was retained in HCC cells negative for both miRNA122a and miRNA199a. Mimics and inhibitors for individual miRNAs were used to confirm these results. Furthermore, suicide gene therapy with cytosine deaminase (CD)/5-fluorocytosine system resulted in limited killing of cells expressing either of the two miRNAs. Finally, we report feasibility of using adeno associated virus (AAV) based vectors for delivery of this dual regulated gene delivery system. These results present a novel dual targeted system whereby miRNA122a and miRNA199a act either synergistically or independently in regulating transgene expression with vectors harbouring binding sites of both miRNAs and have implications in detargeting vectors from multiple cell types in the liver

    Sphere culture of murine lung cancer cell lines are enriched with cancer initiating cells

    No full text
    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumor sphere culture, these cells exhibited selfrenewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the interaction of CICs with the host immune system

    Systematic assessment of clinical methods to diagnose and monitor diabetic retinal neuropathy

    No full text
    Purpose. Diabetic retinal neuropathy refers to retinal neural tissue damage occurring before the structural retinal changes of diabetic retinopathy and fulfils many of the criteria for causality for the subsequent vasculopathy. Developing reliable means of measuring neuronal damage in diabetes may be important in efforts to prevent retinopathy of a clinically significant and irreversible stage. This study aimed at systematically assessing current clinical measurements of diabetic retinal neuropathy so that future studies may utilise a consensual battery of tests in studying this poorly understood disease state between a healthy retina and one that is retinopathic. Methods. A systematic search of the medical literature since 1984 was performed on PUBMED and EMBASE, and the evidence supporting each identified method as an indicator for clinically important diabetic retinal neuropathy was graded relatively as compelling, medium, or weak according to criteria assessing its relationship to subsequent diabetic retinopathy, quality of supporting studies, and published reproducibility. Results. The systematic search yielded 6432 results. Subsequent assessment by two independent investigators identified 601 multiple subject studies in humans assessing clinical aspects of the retinal structure, function, or psychophysics in the prediabetic retina. The 933 separate instances of clinical methods assessed as being supported by relatively "compelling" evidence included colour vision changes, flash ERG b-wave latency, flash multifocal b-wave latency, scotopic b-wave and oscillatory potentials in ERG, and contrast sensitivity. Conclusion. The results showed moderately poor quality of extant evidence and indicate the best clinical methods for assessing diabetic retinal neuropathy that remain to be confirmed. This is the first systematic assessment of the medical literature aiming at assessing the breadth and validity of these methods and represents an early step in identifying and developing clinical endpoints for use in trials designed to identify at-risk patients or prevent diabetic retinopathy. © 2018 K. Sean Jenkins et al

    Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells

    No full text
    Background: It has been proposed that cancer establishment, maintenance, and recurrence may be attributed to a unique population of tumor cells termed cancer-initiating cells (CICs) that may include characteristics of putative cancer stem cell-like cells. Studies in lung cancer have shown that such cells can be enriched and propagated in vitro by culturing tumor cells in serum-free suspension as tumorspheres. CICs have been characterized for their phenotype, stem cell-like qualities, and their role in establishing tumor and maintaining tumor growth. Less is known about the interaction of CICs with the immune system. Methods: We established CIC-enriched tumorspheres from murine TC-1 lung cancer cells, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and evaluated their susceptibility to antitumor immune responses both in vitro and in vivo. Results: TC-1 CICs demonstrated reduced expression of surface major histocompatibility complex (MHC)-I molecules compared to non-CICs. We similarly determined decreased MHC-I expression in five of six human lung cancer cell lines cultured under conditions enriching for CICs. In vivo, TC-1 cells enriched for CICs were resistant to human papillomavirus 16 E6/E7 peptide vaccine-mediated killing. We found that vaccinated mice challenged with CIC enriched tumorspheres demonstrated shorter survivals and showed significantly fewer CD8+ tumor infiltrating lymphocytes compared to CIC non-enriched challenged mice. Furthermore, cultured cytotoxic T lymphocytes (CTLs) from vaccinated mice demonstrated reduced capacity to lyse TC-1 cells enriched for CICs compared to non-enriched TC-1 cells. Following treatment with IFN-γ, both CIC enriched and non-enriched TC-1 cells expressed similar levels of MHC-I, and the increased MHC-I expression on CICs resulted in greater CTL-mediated tumor lysis and improved tumor-free survival in mice. Conclusions: These results suggest that the attenuated expression of MHC-I molecules by CICs represents a potential strategy of CICs to escape immune recognition, and that the development of successful immunotherapy strategies targeting CICs may decrease their resistance to T cell-mediated immune detection by enhancing CIC MHC-I expression. © 2018 The Author(s)

    Epithelial-to-mesenchymal plasticity of cancer stem cells: Therapeutic targets in hepatocellular carcinoma

    No full text
    Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC) model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future

    Characterisation and validation of the 8-fold quadrant dissected human retinal explant culture model for pre-clinical toxicology investigation

    No full text
    © 2019 One of the major challenges in studying ocular toxicology is a lack of clinically-relevant retinal experimental models. In this study we describe the use of an in vitro human retinal explant strategy to generate a reproducible experimental model with utility in neuro-toxicity retinal studies. A retinal dissection strategy, referred to as the 8 fold quadrant dissection, was developed by dissecting human donor retinas into 4 fragments through the fovea in order to obtain 8 experimentally reproducible retinal explants from a single donor. This quadrant dissection gave rise to equivalent proportions of CD73+ photoreceptors and CD90+ ganglion cells in 8 fragments from a single donor and this remained stable for up to 3 days in culture. Major retinal cell types continued to be observed after 8 weeks in culture, despite breakdown of the retinal layers, suggesting the potential to use this model in long-term studies where observation of individual cell types is possible. The utility of this system was examined in a proof of principle neuro-toxicology study. We showed reproducible induction of toxicity in photoreceptors and retinal ganglion cells by glutamate, cobalt chloride and hydrogen peroxide insults, and observed the therapeutic positive effects of the administration of memantine, formononetin and trolox. The quadrant dissected human retinal explants have the potential to be used in toxicology studies in human ocular diseases

    miRNA122a regulation of gene therapy vectors targeting hepatocellular cancer stem cells

    No full text
    © Dhungel et al. In this study, we report a miRNA122a based targeted gene therapy for hepatocellular cancer stem cells (CSCs). First, we assessed the levels of miRNA122a in normal human hepatocytes, a panel of hepatocellular carcinoma (HCC) cell lines and hepatocellular CSCs observing its significant downregulation in HCC and CSCs. The miRNA122a binding site was then incorporated at the 3'-UTR of reporter genes gaussia luciferase (GLuc) and eGFP which resulted in significant hepatocyte detargeting. Using this strategy for the delivery of gene directed enzyme prodrug therapy (GDEPT) utilizing the cytosine deaminase/5-fluorocytosine (CD/5-FC) system, we showed significant killing in cells with low or no miRNA122a while those cells, such as hepatocytes with high miRNA122a were largely spared. Next, we showed that CSC enriched tumorspheres exhibit a significant downregulation of miRNA122a expression providing a rational to exploit its binding site for targeted gene delivery. Using plasmids harboring reporters GLuc and eGFP with or without miR122a binding sites, we showed high reporter expression in the CSCs and little reported expression in the non-enriched cultures. Finally, we demonstrate the efficacy of miRNA122a based post-transcriptionally targeted GDEPT for hepatocellular CSCs

    MicroRNA199a-based post-transcriptional detargeting of gene vectors for hepatocellular carcinoma

    No full text
    © 2018 The Authors A gene therapeutic platform needs to be both efficient and safe. The criterion of safety is particularly important for diseases like hepatocellular carcinoma (HCC), which develop in a background of an already compromised liver. Gene vectors can be constructed either by targeting HCC or by detargeting liver and/or other major organs. miRNA-based negative detargeting has gained considerable attention in recent times due to its effectiveness and the ease with which it can be adapted into current gene delivery vectors. In this study, we provide a proof-of-concept using miRNA199a as a negative targeting agent. We introduced vectors harboring reporters with miRNA199a binding sites in cells expressing high endogenous levels of miRNA199a and compared the reporter expression in HCC cells with low endogenous miRNA199a. We observed that the expression of reporters with miRNA199a binding sites is significantly inhibited in miRNA199a-positive cells, whereas minimal effect was observed in miRNA199a-negative HCC cells. In addition, we created a post-transcriptionally regulated suicide gene therapeutic system based on cytosine deaminase (CD)/5-fluorocytosine (5-FC) exploiting miRNA199a binding sites and observed significantly lower cell death for miRNA199a-positive cells. Furthermore, we observed a decrease in the levels of miRNA199 in 3D tumorspheres of miRNA199a-positive Hepa1-6 cells and a reduction in the inhibition of reporter expression after transfection in these 3D models when compared with 2D Hepa1-6 cells. In summary, we provide evidence of miRNA199a-based post-transcriptional detargeting with relevance to HCC gene therapy
    corecore