41 research outputs found
Cell-Mediated Immunity Generated in Response to a Purified Inactivated Vaccine for Dengue Virus Type 1
Dengue is the most prevalent arboviral disease afflicting humans, and a vaccine appears to be the most rational means of control. Dengue vaccine development is in a critical phase, with the first vaccine licensed in some countries where dengue is endemic but demonstrating insufficient efficacy in immunologically naive populations. Since virus-neutralizing antibodies do not invariably correlate with vaccine efficacy, other markers that may predict protection, including cell-mediated immunity, are urgently needed. Previously, the Walter Reed Army Institute of Research developed a monovalent purified inactivated virus (PIV) vaccine candidate against dengue virus serotype 1 (DENV-1) adjuvanted with alum. The PIV vaccine was safe and immunogenic in a phase I dose escalation trial in healthy, flavivirus-naive adults in the United States. From that trial, peripheral blood mononuclear cells obtained at various time points pre- and postvaccination were used to measure DENV-1-specific T cell responses. After vaccination, a predominant CD4+ T cell-mediated response to peptide pools covering the DENV-1 structural proteins was observed. Over half (13/20) of the subjects produced interleukin-2 (IL-2) in response to DENV peptides, and the majority (17/20) demonstrated peptide-specific CD4+ T cell proliferation. In addition, analysis of postvaccination cell culture supernatants demonstrated an increased rate of production of cytokines, including gamma interferon (IFN-γ), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Overall, the vaccine was found to have elicited DENV-specific CD4+ T cell responses as measured by enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining (ICS), lymphocyte proliferation, and cytokine production assays. Thus, together with antibody readouts, the use of a multifaceted measurement of cell-mediated immune responses after vaccination is a useful strategy for more comprehensively characterizing immunity generated by dengue vaccines
Hepatitis B Seroprevalence in the U.S. Military and its Impact on Potential Screening Strategies
INTRODUCTION: Knowledge of the contemporary epidemiology of hepatitis B virus (HBV) infection among military personnel can inform potential Department of Defense (DoD) screening policy and infection and disease control strategies.
MATERIALS AND METHODS: HBV infection status at accession and following deployment was determined by evaluating reposed serum from 10,000 service members recently deployed to combat operations in Iraq and Afghanistan in the period from 2007 to 2010. A cost model was developed from the perspective of the Department of Defense for a program to integrate HBV infection screening of applicants for military service into the existing screening program of screening new accessions for vaccine-preventable infections.
RESULTS: The prevalence of chronic HBV infection at accession was 2.3/1,000 (95% CI: 1.4, 3.2); most cases (16/21, 76%) identified after deployment were present at accession. There were 110 military service-related HBV infections identified. Screening accessions who are identified as HBV susceptible with HBV surface antigen followed by HBV surface antigen neutralization for confirmation offered no cost advantage over not screening and resulted in a net annual increase in cost of $5.78 million. However, screening would exclude as many as 514 HBV cases each year from accession.
CONCLUSIONS: Screening for HBV infection at service entry would potentially reduce chronic HBV infection in the force, decrease the threat of transfusion-transmitted HBV infection in the battlefield blood supply, and lead to earlier diagnosis and linkage to care; however, applicant screening is not cost saving. Service-related incident infections indicate a durable threat, the need for improved laboratory-based surveillance tools, and mandate review of immunization policy and practice
16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles
BACKGROUND: Sample storage conditions, extraction methods, PCR primers, and parameters are major factors that affect metagenomics analysis based on microbial 16S rRNA gene sequencing. Most published studies were limited to the comparison of only one or two types of these factors. Systematic multi-factor explorations are needed to evaluate the conditions that may impact validity of a microbiome analysis. This study was aimed to improve methodological options to facilitate the best technical approaches in the design of a microbiome study. Three readily available mock bacterial community materials and two commercial extraction techniques, Qiagen DNeasy and MO BIO PowerSoil DNA purification methods, were used to assess procedures for 16S ribosomal DNA amplification and pyrosequencing-based analysis. Primers were chosen for 16S rDNA quantitative PCR and amplification of region V3 to V1. Swabs spiked with mock bacterial community cells and clinical oropharyngeal swabs were incubated at respective temperatures of -80°C, -20°C, 4°C, and 37°C for 4 weeks, then extracted with the two methods, and subjected to pyrosequencing and taxonomic and statistical analyses to investigate microbiome profile stability. RESULTS: The bacterial compositions for the mock community DNA samples determined in this study were consistent with the projected levels and agreed with the literature. The quantitation accuracy of abundances for several genera was improved with changes made to the standard Human Microbiome Project (HMP) procedure. The data for the samples purified with DNeasy and PowerSoil methods were statistically distinct; however, both results were reproducible and in good agreement with each other. The temperature effect on storage stability was investigated by using mock community cells and showed that the microbial community profiles were altered with the increase in incubation temperature. However, this phenomenon was not detected when clinical oropharyngeal swabs were used in the experiment. CONCLUSIONS: Mock community materials originated from the HMP study are valuable controls in developing 16S metagenomics analysis procedures. Long-term exposure to a high temperature may introduce variation into analysis for oropharyngeal swabs, suggestive of storage at 4°C or lower. The observed variations due to sample storage temperature are in a similar range as the intrapersonal variability among different clinical oropharyngeal swab samples
Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems
The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates—effector proteins—are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal
