12 research outputs found

    Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma.

    Get PDF
    The poor outcomes in esophageal adenocarcinoma (EAC) prompted us to interrogate the pattern and timing of metastatic spread. Whole-genome sequencing and phylogenetic analysis of 388 samples across 18 individuals with EAC showed, in 90% of patients, that multiple subclones from the primary tumor spread very rapidly from the primary site to form multiple metastases, including lymph nodes and distant tissues-a mode of dissemination that we term 'clonal diaspora'. Metastatic subclones at autopsy were present in tissue and blood samples from earlier time points. These findings have implications for our understanding and clinical evaluation of EAC.MRC core grant (RG84369), an NIHR Research Professorship (RG67258) and Cancer Research UK (RG66287)

    Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance.

    Get PDF
    Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.Whole-genome sequencing of esophageal adenocarcinoma samples was performed as part of the International Cancer Genome Consortium (ICGC) through the oEsophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium and was funded by Cancer Research UK. We thank the ICGC members for their input on verification standards as part of the benchmarking exercise. We thank the Human Research Tissue Bank, which is supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital and UCL. Also the University Hospital of Southampton Trust and the Southampton, Birmingham, Edinburgh and UCL Experimental Cancer Medicine Centres and the QEHB charities. This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited. We would like to thank Dr. Peter Van Loo for providing the NGS version of ASCAT for copy number calling. We are grateful to all the patients who provided written consent for participation in this study and the staff at all participating centres. Some of the work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. The work at UCLH/UCL was also supported by the CRUK UCL Early Cancer Medicine Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.365

    A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    Get PDF
    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer.This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited

    Investigating Genetic and Other Determinants of First-Onset Myocardial Infarction in Malaysia:Protocol for the Malaysian Acute Vascular Events Risk Study

    No full text
    BACKGROUND: Although the burden of premature myocardial infarction (MI) is high in Malaysia, direct evidence on the determinants of MI in this multi-ethnic population remains sparse. OBJECTIVE: The Malaysian Acute Vascular Events Risk (MAVERIK) study is a retrospective case-control study established to investigate the genomic, lipid-related, and other determinants of acute MI in Malaysia. In this paper, we report the study protocol and early results. METHODS: By June 2019, we had enrolled approximately 2500 patients with their first MI and 2500 controls without cardiovascular disease, who were frequency-matched by age, sex, and ethnicity, from 17 hospitals in Malaysia. For each participant, serum and whole blood have been collected and stored. Clinical, demographic, and behavioral information has been obtained using a 200-item questionnaire. RESULTS: Tobacco consumption, a history of diabetes, hypertension, markers of visceral adiposity, indicators of lower socioeconomic status, and a family history of coronary disease were more prevalent in cases than in controls. Adjusted (age and sex) logistic regression models for traditional risk factors indicated that current smoking (odds ratio [OR] 4.11, 95% CI 3.56-4.75; P30 kg/m(2); OR 1.19, 95% CI 1.05-1.34; P=.009) were associated with MI in age- and sex-adjusted models. CONCLUSIONS: The MAVERIK study can serve as a useful platform to investigate genetic and other risk factors for MI in an understudied Southeast Asian population. It should help to hasten the discovery of disease-causing pathways and inform regionally appropriate strategies that optimize public health action. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/3188

    Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma

    No full text
    The molecular genetic relationship between esophageal adenocarcinoma (EAC) and its precursor lesion, Barrett's esophagus, is poorly understood. Using whole-genome sequencing on 23 paired Barrett's esophagus and EAC samples, together with one in-depth Barrett's esophagus case study sampled over time and space, we have provided the following new insights: (i) Barrett's esophagus is polyclonal and highly mutated even in the absence of dysplasia; (ii) when cancer develops, copy number increases and heterogeneity persists such that the spectrum of mutations often shows surprisingly little overlap between EAC and adjacent Barrett's esophagus; and (iii) despite differences in specific coding mutations, the mutational context suggests a common causative insult underlying these two conditions. From a clinical perspective, the histopathological assessment of dysplasia appears to be a poor reflection of the molecular disarray within the Barrett's epithelium, and a molecular Cytosponge technique overcomes sampling bias and has the capacity to reflect the entire clonal architecture.</p
    corecore