244 research outputs found
On the Spatial Distribution of Stellar Populations in the Large Magellanic Cloud
We measure the angular correlation function of stars in a region of the Large
Magellanic Cloud (LMC) that spans 2 degrees by 1.5 degrees. We find that the
correlation functions of stellar populations are represented well by
exponential functions of the angular separation for separations between 2 and
40 arcmin (corresponding to ~ 30 pc and 550 pc for an LMC distance of 50 kpc).
The inner boundary is set by the presence of distinct, highly correlated
structures, which are the more familiar stellar clusters, and the outer
boundary is set by the observed region's size and the presence of two principal
centers of star formation within the region. We also find that the
normalization and scale length of the correlation function changes
systematically with the mean age of the stellar population. The existence of
positive correlation at large separations (~300 pc), even in the youngest
population, argues for large-scale hierarchical structure in current star
formation. The evolution of the angular correlation toward lower normalizations
and longer scale lengths with stellar age argues for the dispersion of stars
with time. We show that a simple, stochastic, self-propagating star formation
model is qualitatively consistent with this behavior of the correlation
function.Comment: 30 pages, 13 Figures. Scheduled for publication in AJ in June 199
Discovery of the Transiting Planet Kepler-5B
We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3).NASA's Science Mission DirectorateAstronom
Transit Timing Observations from Kepler: VI. Potentially interesting candidate systems from Fourier-based statistical tests
We analyze the deviations of transit times from a linear ephemeris for the
Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We
conduct two statistical tests for all KOIs and a related statistical test for
all pairs of KOIs in multi-transiting systems. These tests identify several
systems which show potentially interesting transit timing variations (TTVs).
Strong TTV systems have been valuable for the confirmation of planets and their
mass measurements. Many of the systems identified in this study should prove
fruitful for detailed TTV studies.Comment: 32 pages, 6 of text and one long table, Accepted to Ap
Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems
The Kepler mission has discovered over 2500 exoplanet candidates in the first
two years of spacecraft data, with approximately 40% of them in candidate
multi-planet systems. The high rate of multiplicity combined with the low rate
of identified false-positives indicates that the multiplanet systems contain
very few false-positive signals due to other systems not gravitationally bound
to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False
positives in the multi- planet systems are identified and removed, leaving
behind a residual population of candidate multi-planet transiting systems
expected to have a false-positive rate less than 1%. We present a sample of 340
planetary systems that contain 851 planets that are validated to substantially
better than the 99% confidence level; the vast majority of these have not been
previously verified as planets. We expect ~2 unidentified false-positives
making our sample of planet very reliable. We present fundamental planetary
properties of our sample based on a comprehensive analysis of Kepler light
curves and ground-based spectroscopy and high-resolution imaging. Since we do
not require spectroscopy or high-resolution imaging for validation, some of our
derived parameters for a planetary system may be systematically incorrect due
to dilution from light due to additional stars in the photometric aperture.
None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the
Astrophysical Journa
PHAT Stellar Cluster Survey I. Year 1 Catalog and Integrated Photometry
The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an on-going
Hubble Space Telescope (HST) multi-cycle program to obtain high spatial
resolution imaging of one-third of the M31 disk at ultraviolet through
near-infrared wavelengths. In this paper, we present the first installment of
the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will
be among the largest and most comprehensive surveys of resolved star clusters
in any galaxy. The exquisite spatial resolution achieved with HST has allowed
us to identify hundreds of new clusters that were previously inaccessible with
existing ground-based surveys. We identify 601 clusters in the Year 1 sample,
representing more than a factor of four increase over previous catalogs within
the current survey area (390 arcmin^2). This work presents results derived from
the first \sim25% of the survey data; we estimate that the final sample will
include \sim2500 clusters. For the Year 1 objects, we present a catalog with
positions, radii, and six-band integrated photometry. Along with a general
characterization of the cluster luminosities and colors, we discuss the cluster
luminosity function, the cluster size distributions, and highlight a number of
individually interesting clusters found in the Year 1 search.Comment: 26 pages, 22 figures, Accepted by Ap
Recommended from our members
Kepler-4B: A Hot Neptune-Like Planet of A G0 Star Near Main-Sequence Turnoff
Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size.W. M. Keck FoundationNASA's Science Mission DirectorateAstronom
A First Comparison of Kepler Planet Candidates in Single and Multiple Systems
In this letter we present an overview of the rich population of systems with
multiple candidate transiting planets found in the first four months of Kepler
data. The census of multiples includes 115 targets that show 2 candidate
planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170
systems with 408 candidates. When compared to the 827 systems with only one
candidate, the multiples account for 17 percent of the total number of systems,
and a third of all the planet candidates. We compare the characteristics of
candidates found in multiples with those found in singles. False positives due
to eclipsing binaries are much less common for the multiples, as expected.
Singles and multiples are both dominated by planets smaller than Neptune; 69
+2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that
systems with multiple transiting planets are less likely to include a
transiting giant planet, suggests that close-in giant planets tend to disrupt
the orbital inclinations of small planets in flat systems, or maybe even to
prevent the formation of such systems in the first place.Comment: 13 pages, 13 figures, submitted to ApJ Letter
Kepler-7b: A Transiting Planet with Unusually Low Density
We report the discovery and confirmation of Kepler-7b, a transiting planet
with unusually low density. The mass is less than half that of Jupiter, Mp =
0.43 Mj, but the radius is fifty percent larger, Rp = 1.48 Rj. The resulting
density, 0.17 g/cc, is the second lowest reported so far for an extrasolar
planet. The orbital period is fairly long, P = 4.886 days, and the host star is
not much hotter than the Sun, Teff = 6000 K. However, it is more massive and
considerably larger than the sun, Mstar = 1.35 Msun and Rstar = 1.84 Rsun, and
must be near the end of its life on the Main Sequence.Comment: 19 pages, 3 figure
The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31
As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle
program, we observed a 12' \times 6.5' area of the bulge of M31 with the
WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample
of \sim4000 UV-bright, old stars, vastly larger than previously available. We
use updated Padova stellar evolutionary tracks to classify these hot stars into
three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and
AGB-manqu\'e stars. P-AGB stars are the end result of the asymptotic giant
branch (AGB) phase and are expected in a wide range of stellar populations,
whereas PE-AGB and AGB-manqu\'e (together referred to as the hot
post-horizontal branch; HP-HB) stars are the result of insufficient envelope
masses to allow a full AGB phase, and are expected to be particularly prominent
at high helium or {\alpha} abundances when the mass loss on the RGB is high.
Our data support previous claims that most UV-bright sources in the bulge are
likely hot (extreme) horizontal branch stars (EHB) and their progeny. We
construct the first radial profiles of these stellar populations, and show that
they are highly centrally concentrated, even more so than the integrated UV or
optical light. However, we find that this UV-bright population does not
dominate the total UV luminosity at any radius, as we are detecting only the
progeny of the EHB stars that are the likely source of the UVX. We calculate
that only a few percent of MS stars in the central bulge can have gone through
the HP-HB phase and that this percentage decreases strongly with distance from
the center. We also find that the surface density of hot UV-bright stars has
the same radial variation as that of low-mass X-ray binaries. We discuss age,
metallicity, and abundance variations as possible explanations for the observed
radial variation in the UV-bright population.Comment: Accepted for publication in Ap
Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability
We confirm 27 planets in 13 planetary systems by showing the existence of
statistically significant anti-correlated transit timing variations (TTVs),
which demonstrates that the planet candidates are in the same system, and
long-term dynamical stability, which places limits on the masses of the
candidates---showing that they are planetary. %This overall method of planet
confirmation was first applied to \kepler systems 23 through 32. All of these
newly confirmed planetary systems have orbital periods that place them near
first-order mean motion resonances (MMRs), including 6 systems near the 2:1
MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several
unconfirmed planet candidates exist in some systems (that cannot be confirmed
with this method at this time). A few of these candidates would also be near
first order MMRs with either the confirmed planets or with other candidates.
One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets
orbiting a 12th magnitude, giant star with radius over three times that of the
Sun and effective temperature of 4900 K---among the largest stars known to host
a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA
- …