15 research outputs found

    The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The voltage-gated potassium channel hEag1 (K<sub>V</sub>10.1) has been related to cancer biology. The physiological expression of the human channel is restricted to the brain but it is frequently and abundantly expressed in many solid tumors, thereby making it a promising target for a specific diagnosis and therapy. Because chronic lymphatic leukemia has been described not to express hEag1, it has been assumed that the channel is not expressed in hematopoietic neoplasms in general.</p> <p>Results</p> <p>Here we show that this assumption is not correct, because the channel is up-regulated in myelodysplastic syndromes, chronic myeloid leukemia and almost half of the tested acute myeloid leukemias in a subtype-dependent fashion. Most interestingly, channel expression strongly correlated with increasing age, higher relapse rates and a significantly shorter overall survival. Multivariate Cox regression analysis revealed hEag1 expression levels in AML as an independent predictive factor for reduced disease-free and overall survival; such an association had not been reported before. As a functional correlate, specific hEag1 blockade inhibited the proliferation and migration of several AML cell lines and primary cultured AML cells <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our observations implicate hEag1 as novel target for diagnostic, prognostic and/or therapeutic approaches in AML.</p

    Nucleofection induces non-specific changes in the metabolic activity of transfected cells

    Get PDF
    Transfection has become an everyday technique widely used for functional studies in living cells. The choice of the particular transfection method is usually determined by its efficiency and toxicity, and possible functional consequences specific to the method used are normally overlooked. We describe here that nucleofection, a method increasingly used because of its convenience and high efficiency, increases the metabolic rate of some cancer cells, which can be misleading when used as a measure of proliferation. Moreover, nucleofection can alter the subcellular expression pattern of the transfected protein. These undesired effects are independent of the transfected nucleic acid, but depend on the particular cell line used. Therefore, the interpretation of functional data using this technology requires further controls and caution
    corecore