16 research outputs found
Hybrid Molecules Composed of 2,4-Diamino-1,3,5-triazines and 2-Imino-Coumarins and Coumarins. Synthesis and Cytotoxic Properties
A series of 2-imino-2H-chromen-3-yl-1,3,5-triazine compounds 5–12, which are namely hybrids of 2,4-diamino-1,3,5-triazines and 2-imino-coumarins, was synthesized by reacting 2-(4,6-diamine-1,3,5-triazin-2-yl)acetonitriles 1–4 with 2-hydroxybenzaldehydes. After this, upon heating in aqueous DMF, 2-imino-2H-chromen-3-yl-1,3,5-triazines 10 and 12 were converted into the corresponding 2H-chromen-3-yl-1,3,5-triazines 13 and 14, which are essentially hybrids of 2,4-diamino-1,3,5-triazines and coumarins. The in vitro anticancer activity of the newly prepared compounds was evaluated against five human cancer cell lines: DAN-G, A-427, LCLC-103H, SISO and RT-4. The greatest cytotoxic activity displayed 4-[7-(diethylamino)-2-imino-2H-chromen-3-yl]-6-(4-phenylpiperazin-1-yl)-1,3,5-triazin-2-amine (11, IC50 in the range of 1.51–2.60 μM)
2,2′-((1,4-Dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid)
The title compound, 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid) was synthesized from isoxazolo[3,4-b]quinolin-3(1H)-one and dimethyl acetylenedicarboxylate (DMAD) via a double aza-Michael addition followed by [1,3]-H shifts. The product was characterized by infrared and nuclear magnetic resonance spectroscopy, as well as elemental analysis and high-resolution mass spectrometry (HRMS). The proposed reaction mechanism was rationalized by density functional theory (DFT) calculations
Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes
Isoxazolo[3,4-b]pyridin-3(1H)-ones are ‘spring-loaded’ compounds that quantitatively react with iminium salts derived from formaldehyde and secondary amines to yield fluorescent Safirinium dyes. The mechanism and energetics of the above tandem Mannich–electrophilic amination reaction have been investigated experimentally and using theoretical methods. The hybrid B3LYP functional with GD3 empirical dispersion and range-separated hybrid functional ωB97XD, both combined with a PCM model, were applied to acquire the energetic profiles of the studied reaction with respect to the structure of secondary amine and isoxazolone used. Diastereoselectivity of the tandem reactions involving iminium salt derived from L-proline has been rationalized theoretically by means of density functional theory calculations
Synthesis of Novel Aryl(heteroaryl)sulfonyl Ureas of Possible Biological Interest
The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC) and 4-dimethylaminopyridine (DMAP) was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa ~ 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa ~ 8) furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroaryl)sulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroaryl)sulfonyl isocyanates
Affinity of Fluoroquinolone–Safirinium Dye Hybrids to Phospholipids Estimated by IAM-HPLC
Nowadays, fluoroquinolones (FQs) constitute one of the most important classes of antibiotics. FQs are used to treat infections caused by Gram-positive and Gram-negative species. A set of fluoroquinolone–Safirinium dye hybrids has been synthesized in our laboratory as potential new dual-action antibacterial agents. In the present study we have evaluated how such a modification influences the affinity of FQs to phospholipids. The immobilized artificial membrane (IAM) high-performance liquid chromatography (IAM-HPLC) was used as a tool for the determination of phospholipids partitioning. The obtained results indicate that the fluoroquinolone–Safirinium dye hybrids, especially the SafiriniumP conjugates, display significantly lower affinity to phospholipids than the parent FQs. Despite the fact that the hybrid structures comprise a quaternary nitrogen atom and hence are permanently charged, the attractive electrostatic interactions between the solutes and negatively charged phospholipids do not occur or occur at a lesser extent than in the case of the unmodified FQs. Since affinity of FQs to phospholipids involves molecular mechanism, which is not entirely determined by lipophilicity, assessment of phospholipid partitioning should be considered at the early stage of the development of new FQ antibiotics
Conjugate Addition of Nucleophiles to the Vinyl Function of 2-Chloro-4-vinylpyrimidine Derivatives
Conjugate addition reaction of various nucleophiles across the vinyl group of 2-chloro-4-vinylpyrimidine, 2-chloro-4-(1-phenylvinyl)pyrimidine and 2-chloro-4-vinylquinazoline provides the corresponding 2-chloro-4-(2-substituted ethyl)pyrimidines and 2-chloro-4-(2-substituted ethyl)quinazolines. Treatment of these products, without isolation, with N-methylpiperazine results in nucleophilic displacement of chloride and yields the corresponding 2,4-disubstituted pyrimidines and quinazolines
Antibacterial and antibiofilm activity of permanently ionized quaternary ammonium fluoroquinolones
Publisher Copyright: © 2023 The AuthorsA series of quaternary ammonium fluoroquinolones was obtained by exhaustive methylation of the amine groups present at the 7-position of fluoroquinolones, including ciprofloxacin, enoxacin, gatifloxacin, lomefloxacin, and norfloxacin. The synthesized molecules were tested for their antibacterial and antibiofilm activities against Gram-positive and Gram-negative human pathogens, i.e. Staphylococcus aureus and Pseudomonas aeruginosa. The study showed that the synthesized compounds are potent antibacterial agents (MIC values at the lowest 6.25 μM) with low cytotoxicity in vitro as assessed on the BALB 3T3 mouse embryo cell line. Further experiments proved that the tested derivatives are able to bind to the DNA gyrase and topoisomerase IV active sites in a fluoroquinolone-characteristic manner. The most active quaternary ammonium fluoroquinolones, in contrast to ciprofloxacin, reduce the total biomass of P. aeruginosa ATCC 15442 biofilm in post-exposure experiments. The latter effect may be due to the dual mechanism of action of the quaternary fluoroquinolones, which also involves disruption of bacterial cell membranes. IAM-HPLC chromatographic experiments with immobilized artificial membranes (phospholipids) showed that the most active compounds were those with moderate lipophilicity and containing a cyclopropyl group at the N1 nitrogen atom in the fluoroquinolone core.Peer reviewe