5,079 research outputs found
Creation and Growth of Components in a Random Hypergraph Process
Denote by an -component a connected -uniform hypergraph with
edges and vertices. We prove that the expected number of
creations of -component during a random hypergraph process tends to 1 as
and tend to with the total number of vertices such that
. Under the same conditions, we also show that
the expected number of vertices that ever belong to an -component is
approximately . As an immediate
consequence, it follows that with high probability the largest -component
during the process is of size . Our results
give insight about the size of giant components inside the phase transition of
random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend
Fully Analyzing an Algebraic Polya Urn Model
This paper introduces and analyzes a particular class of Polya urns: balls
are of two colors, can only be added (the urns are said to be additive) and at
every step the same constant number of balls is added, thus only the color
compositions varies (the urns are said to be balanced). These properties make
this class of urns ideally suited for analysis from an "analytic combinatorics"
point-of-view, following in the footsteps of Flajolet-Dumas-Puyhaubert, 2006.
Through an algebraic generating function to which we apply a multiple
coalescing saddle-point method, we are able to give precise asymptotic results
for the probability distribution of the composition of the urn, as well as
local limit law and large deviation bounds.Comment: LATIN 2012, Arequipa : Peru (2012
Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs
General upper tail estimates are given for counting edges in a random induced
subhypergraph of a fixed hypergraph H, with an easy proof by estimating the
moments. As an application we consider the numbers of arithmetic progressions
and Schur triples in random subsets of integers. In the second part of the
paper we return to the subgraph counts in random graphs and provide upper tail
estimates in the rooted case.Comment: 15 page
Detecting degree symmetries in networks
The surrounding of a vertex in a network can be more or less symmetric. We
derive measures of a specific kind of symmetry of a vertex which we call degree
symmetry -- the property that many paths going out from a vertex have
overlapping degree sequences. These measures are evaluated on artificial and
real networks. Specifically we consider vertices in the human metabolic
network. We also measure the average degree-symmetry coefficient for different
classes of real-world network. We find that most studied examples are weakly
positively degree-symmetric. The exceptions are an airport network (having a
negative degree-symmetry coefficient) and one-mode projections of social
affiliation networks that are rather strongly degree-symmetric
Seeded Graph Matching via Large Neighborhood Statistics
We study a well known noisy model of the graph isomorphism problem. In this
model, the goal is to perfectly recover the vertex correspondence between two
edge-correlated Erd\H{o}s-R\'{e}nyi random graphs, with an initial seed set of
correctly matched vertex pairs revealed as side information. For seeded
problems, our result provides a significant improvement over previously known
results. We show that it is possible to achieve the information-theoretic limit
of graph sparsity in time polynomial in the number of vertices . Moreover,
we show the number of seeds needed for exact recovery in polynomial-time can be
as low as in the sparse graph regime (with the average degree
smaller than ) and in the dense graph regime.
Our results also shed light on the unseeded problem. In particular, we give
sub-exponential time algorithms for sparse models and an
algorithm for dense models for some parameters, including some that are not
covered by recent results of Barak et al
Network reachability of real-world contact sequences
We use real-world contact sequences, time-ordered lists of contacts from one
person to another, to study how fast information or disease can spread across
network of contacts. Specifically we measure the reachability time -- the
average shortest time for a series of contacts to spread information between a
reachable pair of vertices (a pair where a chain of contacts exists leading
from one person to the other) -- and the reachability ratio -- the fraction of
reachable vertex pairs. These measures are studied using conditional uniform
graph tests. We conclude, among other things, that the network reachability
depends much on a core where the path lengths are short and communication
frequent, that clustering of the contacts of an edge in time tend to decrease
the reachability, and that the order of the contacts really do make sense for
dynamical spreading processes.Comment: (v2: fig. 1 fixed
Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics
Simple heuristics often show a remarkable performance in practice for
optimization problems. Worst-case analysis often falls short of explaining this
performance. Because of this, "beyond worst-case analysis" of algorithms has
recently gained a lot of attention, including probabilistic analysis of
algorithms.
The instances of many optimization problems are essentially a discrete metric
space. Probabilistic analysis for such metric optimization problems has
nevertheless mostly been conducted on instances drawn from Euclidean space,
which provides a structure that is usually heavily exploited in the analysis.
However, most instances from practice are not Euclidean. Little work has been
done on metric instances drawn from other, more realistic, distributions. Some
initial results have been obtained by Bringmann et al. (Algorithmica, 2013),
who have used random shortest path metrics on complete graphs to analyze
heuristics.
The goal of this paper is to generalize these findings to non-complete
graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path
metric is constructed by drawing independent random edge weights for each edge
in the graph and setting the distance between every pair of vertices to the
length of a shortest path between them with respect to the drawn weights. For
such instances, we prove that the greedy heuristic for the minimum distance
maximum matching problem, the nearest neighbor and insertion heuristics for the
traveling salesman problem, and a trivial heuristic for the -median problem
all achieve a constant expected approximation ratio. Additionally, we show a
polynomial upper bound for the expected number of iterations of the 2-opt
heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201
Monotone graph limits and quasimonotone graphs
The recent theory of graph limits gives a powerful framework for
understanding the properties of suitable (convergent) sequences of
graphs in terms of a limiting object which may be represented by a symmetric
function on , i.e., a kernel or graphon. In this context it is
natural to wish to relate specific properties of the sequence to specific
properties of the kernel. Here we show that the kernel is monotone (i.e.,
increasing in both variables) if and only if the sequence satisfies a
`quasi-monotonicity' property defined by a certain functional tending to zero.
As a tool we prove an inequality relating the cut and norms of kernels of
the form with and monotone that may be of interest in its
own right; no such inequality holds for general kernels.Comment: 38 page
An Interesting Class of Operators with unusual Schatten-von Neumann behavior
We consider the class of integral operators Q_\f on of the form
(Q_\f f)(x)=\int_0^\be\f (\max\{x,y\})f(y)dy. We discuss necessary and
sufficient conditions on to insure that is bounded, compact,
or in the Schatten-von Neumann class \bS_p, . We also give
necessary and sufficient conditions for to be a finite rank
operator. However, there is a kind of cut-off at , and for membership in
\bS_{p}, , the situation is more complicated. Although we give
various necessary conditions and sufficient conditions relating to
Q_{\phi}\in\bS_{p} in that range, we do not have necessary and sufficient
conditions. In the most important case , we have a necessary condition and
a sufficient condition, using and modulus of continuity,
respectively, with a rather small gap in between. A second cut-off occurs at
: if \f is sufficiently smooth and decays reasonably fast, then \qf
belongs to the weak Schatten-von Neumann class \wS{1/2}, but never to
\bS_{1/2} unless \f=0.
We also obtain results for related families of operators acting on
and .
We further study operations acting on bounded linear operators on
related to the class of operators Q_\f. In particular we
study Schur multipliers given by functions of the form and
we study properties of the averaging projection (Hilbert-Schmidt projection)
onto the operators of the form Q_\f.Comment: 87 page
- …