1,996 research outputs found
Substrate Adhesion of a Nongrafted Flexible Polymer in a Cavity
In a contact density chain-growth study we investigate the
solubility-temperature pseudo-phase diagram of a lattice polymer in a cavity
with an attractive surface. In addition to the main phases of adsorbed and
desorbed conformations we find numerous subphases of collapsed and expanded
structures.Comment: 20 pages, 6 figure
Properties of phase transitions of higher order
There is only limited experimental evidence for the existence in nature of
phase transitions of Ehrenfest order greater than two. However, there is no
physical reason for their non-existence, and such transitions certainly exist
in a number of theoretical models in statistical physics and lattice field
theory. Here, higher-order transitions are analysed through the medium of
partition function zeros. Results concerning the distributions of zeros are
derived as are scaling relations between some of the critical exponents.Comment: 6 pages, poster presented at Lattice 2005 (Spin and Higgs), Trinity
College Dubli
Formed platelet combustor liner construction feasibility, phase A
Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase A - feasibility study and technology development; (2) phase B - sub-scale fabrication feasibility; and (3) phase C - large scale fabrication validation. This report covers the Phase A activities, which began in December of 1988
Open boundary conditions in stochastic transport processes with pair-factorized steady states
Using numerical methods we discuss the effects of open boundary conditions on
condensation phenomena in the zero-range process (ZRP) and transport processes
with pair-factorized steady states (PFSS), an extended model of the ZRP with
nearest-neighbor interaction. For the zero-range process we compare to
analytical results in the literature with respect to criticality and
condensation. For the extended model we find a similar phase structure, but
observe supercritical phases with droplet formation for strong boundary drives.Comment: conference contribution for the 27th Annual CSP Workshop on "Recent
Developments in Computer Simulation Studies in Condensed Matter Physics", CSP
2014 5 pages, 5 figure
Multicanonical Study of Coarse-Grained Off-Lattice Models for Folding Heteropolymers
We have performed multicanonical simulations of hydrophobic-hydrophilic
heteropolymers with two simple effective, coarse-grained off-lattice models to
study the influence of specific interactions in the models on conformational
transitions of selected sequences with 20 monomers. Another aspect of the
investigation was the comparison with the purely hydrophobic homopolymer and
the study of general conformational properties induced by the "disorder" in the
sequence of a heteropolymer. Furthermore, we applied an optimization algorithm
to sequences with up to 55 monomers and compared the global-energy minimum
found with lowest-energy states identified within the multicanonical
simulation. This was used to find out how reliable the multicanonical method
samples the free-energy landscape, in particular for low temperatures.Comment: 11 pages, RevTeX, 10 Postscript figures, Author Information under
http://www.physik.uni-leipzig.de/index.php?id=2
Unexpected Spin-Off from Quantum Gravity
We propose a novel way of investigating the universal properties of spin
systems by coupling them to an ensemble of causal dynamically triangulated
lattices, instead of studying them on a fixed regular or random lattice.
Somewhat surprisingly, graph-counting methods to extract high- or
low-temperature series expansions can be adapted to this case. For the
two-dimensional Ising model, we present evidence that this ameliorates the
singularity structure of thermodynamic functions in the complex plane, and
improves the convergence of the power series.Comment: 10 pages, 4 figures; final, slightly amended version, to appear in
Physica
Error estimation and reduction with cross correlations
Besides the well-known effect of autocorrelations in time series of Monte
Carlo simulation data resulting from the underlying Markov process, using the
same data pool for computing various estimates entails additional cross
correlations. This effect, if not properly taken into account, leads to
systematically wrong error estimates for combined quantities. Using a
straightforward recipe of data analysis employing the jackknife or similar
resampling techniques, such problems can be avoided. In addition, a covariance
analysis allows for the formulation of optimal estimators with often
significantly reduced variance as compared to more conventional averages.Comment: 16 pages, RevTEX4, 4 figures, 6 tables, published versio
Application of Multicanonical Multigrid Monte Carlo Method to the Two-Dimensional -Model: Autocorrelations and Interface Tension
We discuss the recently proposed multicanonical multigrid Monte Carlo method
and apply it to the scalar -model on a square lattice. To investigate
the performance of the new algorithm at the field-driven first-order phase
transitions between the two ordered phases we carefully analyze the
autocorrelations of the Monte Carlo process. Compared with standard
multicanonical simulations a real-time improvement of about one order of
magnitude is established. The interface tension between the two ordered phases
is extracted from high-statistics histograms of the magnetization applying
histogram reweighting techniques.Comment: 49 pp. Latex incl. 14 figures (Fig.7 not included, sorry) as
uuencoded compressed tar fil
2D Potts Model Correlation Lengths: Numerical Evidence for at
We have studied spin-spin correlation functions in the ordered phase of the
two-dimensional -state Potts model with , 15, and 20 at the
first-order transition point . Through extensive Monte Carlo
simulations we obtain strong numerical evidence that the correlation length in
the ordered phase agrees with the exactly known and recently numerically
confirmed correlation length in the disordered phase: . As a byproduct we find the energy moments in the ordered phase
at in very good agreement with a recent large -expansion.Comment: 11 pages, PostScript. To appear in Europhys. Lett. (September 1995).
See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
Multicanonical Multigrid Monte Carlo
To further improve the performance of Monte Carlo simulations of first-order
phase transitions we propose to combine the multicanonical approach with
multigrid techniques. We report tests of this proposition for the
-dimensional field theory in two different situations. First, we
study quantum tunneling for in the continuum limit, and second, we
investigate first-order phase transitions for in the infinite volume
limit. Compared with standard multicanonical simulations we obtain improvement
factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9
- …