4 research outputs found

    The presence of CXCR4 +

    No full text
    Purpose: Langerhans Cell Histiocytosis (LCH) is a neoplastic disorder characterized by tissue accumulating CD1a(+) histiocytes which frequently carry somatic mutations. Irrespective of mutation status, these LCH-cells display constitutively active kinases belonging to the MAPK pathway. We evaluated, in retrospect, the contribution of individual components of the MAPK-activating and chemotaxis-promoting TNF-CXCR4-CXCL12 axis to LCH manifestation and outcome. Experimental design: CXCR4, CXCL12 and TNF protein expression was immunohistochemically analyzed in 70 LCH-affected biopsies. The presence of CXCR4(+)CD1a(+) cells in peripheral blood (PB) and/or bone marrow (BM) samples was evaluated by flowcytometry in 13 therapy-naive LCH-patients. Results: CXCL12 was detected in 68/70 (97%) biopsies. CXCR4(+)LCH-cells were present in 50/70 (71%) biopsies; their presence was associated with higher levels of intralesional TNF. Circulating CD1a(+)CXCR4(+) cells were detected in 4/13 (31%) therapy-naive LCH-patients which displayed BRAF(V600E) (2/4), MAP2K1 (1/4) or no (1/4) mutations in their tissues. These CD11c co-expressing CD1a(+)CXCR4(+)cells migrated to CXCL12 in chemotaxis assays. Lesional CXCR4(+)LCH-cells were detected in 18/20 cases who presented with LCH manifestation at multiple sites and in 5/23 (22%) patients who developed additional lesions after initially presenting with a single lesion. The CXCR4 status at onset proved to be an independent risk factor for LCH reactivation in multivariate analysis (odds ratio 10.4, p = 0.034). Conclusions: This study provides the first evidence that CXCR4 is involved in the homing and retention of LCH-cells in CXCL12-expressing tissues and qualifies CXCR4 as a candidate prognostic marker for less favorable disease outcom

    Increased HLA-G Expression in Term Placenta of Women with a History of Recurrent Miscarriage Despite Their Genetic Predisposition to Decreased HLA-G Levels

    No full text
    Human leukocyte antigen (HLA)-G is an immune modulating molecule that is present on fetal extravillous trophoblasts at the fetal-maternal interface. Single nucleotide polymorphisms (SNPs) in the 3 prime untranslated region (3′UTR) of the HLA-G gene can affect the level of HLA-G expression, which may be altered in women with recurrent miscarriages (RM). This case-control study included 23 women with a medical history of three or more consecutive miscarriages who delivered a child after uncomplicated pregnancy, and 46 controls with uncomplicated pregnancy. Genomic DNA was isolated to sequence the 3′UTR of HLA-G. Tissue from term placentas was processed to quantify the HLA-G protein and mRNA levels. The women with a history of RM had a lower frequency of the HLA-G 3′UTR 14-bp del/del genotype as compared to controls (Odds ratio (OR) 0.28; p = 0.039), which has previously been related to higher soluble HLA-G levels. Yet, HLA-G protein (OR 6.67; p = 0.006) and mRNA (OR 6.33; p = 0.010) expression was increased in term placentas of women with a history of RM as compared to controls. In conclusion, during a successful pregnancy, HLA-G expression is elevated in term placentas from women with a history of RM as compared to controls, despite a genetic predisposition that is associated with decreased HLA-G levels. These findings suggest that HLA-G upregulation could be a compensatory mechanism in the occurrence of RM to achieve an ongoing pregnancy
    corecore