22 research outputs found
In vivo accumulation of self-assembling dye Congo red in an area marked by specific immune complexes: possible relevance to chemotherapy.
Supramolecular micellar structures have been proposed as carriers in aim-oriented drug transportation to a target marked by specific immune complexes. In this study, the self-assembling dye Congo red was used as a model supramolecular carrier and its accumulation in the target was studied in vivo. The target was created in vivo as the local specific inflammation provoked by subcutaneous injection of antigen to the ear of a previously immunized rabbit. The color caused by accumulation of Congo red after its intravenous injection was registered by pictures of the ear with suitably filtered visible light shining through it to distinguish Congo red against the background color of hemoglobin. The results confirmed the expected accumulation and retention of Congo red in the inflammation area marked by deposits of specific immune complexes. The role of albumin and its possible interference with transportation of drugs through the blood by supramolecular carriers was also subjected to preliminary examination. The results revealed that albumin collaborates rather than interferes with drug transportation; this is another factor making the use of supramolecular carriers for aim-oriented chemotherapy highly promising
In vivo accumulation of self-assembling dye Congo red in an area marked by specific immune complexes : possible relevance to chemotherapy
Supramolecular micellar structures have been proposed as carriers in aim-oriented drug transportation to a target marked by specific immune complexes. In this study, the self-assembling dye Congo red was used as a model supramolecular carrier and its accumulation in the target was studied in vivo. The target was created in vivo as the local specific inflammation provoked by subcutaneous injection of antigen to the ear of a previously immunized rabbit. The color caused by accumulation of Congo red after its intravenous injection was registered by pictures of the ear with suitably filtered visible light shining through it to distinguish Congo red against the background color of hemoglobin. The results confirmed the expected accumulation and retention of Congo red in the inflammation area marked by deposits of specific immune complexes. The role of albumin and its possible interference with transportation of drugs through the blood by supramolecular carriers was also subjected to preliminary examination. The results revealed that albumin collaborates rather than interferes with drug transportation; this is another factor making the use of supramolecular carriers for aim-oriented chemotherapy highly promising
Silver ions as EM marker of congo red ligation sites in amyloids and amyloid-like aggregates
Congo red (CR) is a known selective amyloid ligand. The focus of our work is identification (by EM imaging) of dye binding sites and their distribution in amyloids and amyloid-like aggregates formed in vitro. In order to produce the required contrast, CR has been indirectly combined with metal via including Titan yellow (TY) by intercalation which exhibits a relatively strong affinity for silver ions. The resulting combined ligand retains its ability to bind to proteins (which it owes to CR) and can easily be detected in EM studies thanks to TY. We have found, however, that in protein aggregates where unfolding is stabilized by aggregation and therefore is irreversible, TY alone may serve as both, the ligand and the metal carrier. The formation of ordered structures in amyloids was studied using IgG light chains with amyloidogenic properties, converted into amyloids by shaking. The resulting EM images were subjected to interpretation on the basis of the authors' earlier research on the CR/light chain complexation process. Our results indicate that dimeric light chains, which are the subject of our study, produce amyloids or amyloid-like complexes with chain-like properties and strong helicalization tendencies. Cursory analysis suggests that the edge polypeptide loops belonging to unstable light chains form intermolecular bridges which promote creation of loose gel deposits, or are otherwise engaged in the swapping processes leading to higher structural ordering
The use of supramolecular structures as protein ligands
Congo red dye as well as other eagerly self-assembling organic molecules which form rod-like or ribbon-like supramolecular structures in water solutions, appears to represent a new class of protein ligands with possible wide-ranging medical applications. Such molecules associate with proteins as integral clusters and preferentially penetrate into areas of low molecular stability. Abnormal, partly unfolded proteins are the main binding target for such ligands, while well packed molecules are generally inaccessible. Of particular interest is the observation that local susceptibility for binding supramolecular ligands may be promoted in some proteins as a consequence of function-derived structural changes, and that such complexation may alter the activity profile of target proteins. Examples are presented in this paper
Dispersion of single-wall carbon nanotubes with supramolecular Congo red : properties of the complexes and mechanism of the interaction
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT–CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system – containing SWNTs covered with CR – offers a wide range of biomedical applications
The use of supramolecular structures as protein ligands
Congo red dye as well as other eagerly self-assembling organic molecules which form rod-like or ribbon-like supramolecular structures in water solutions, appears to represent a new class of protein ligands with possible wide-ranging medical applications. Such molecules associate with proteins as integral clusters and preferentially penetrate into areas of low molecular stability. Abnormal, partly unfolded proteins are the main binding target for such ligands, while well packed molecules are generally inaccessible. Of particular interest is the observation that local susceptibility for binding supramolecular ligands may be promoted in some proteins as a consequence of function-derived structural changes, and that such complexation may alter the activity profile of target proteins. Examples are presented in this paper
The structure and protein binding of amyloid-specific dye reagents
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for β-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of β-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind