22 research outputs found
Machine Learning Technique for Sentiment Classification
Large amount of information are available online on web.The discussion forum, review sites, blogs are some of the opinion rich resources where review or posted articles is their sentiment, or overall opinion towards the subject matter. The opinions obtained from those can be classified in to positive or negative which can be used by customer to make product choice and by businessmen for finding customer satisfaction .This paper studies online movie reviews using sentiment analysis approaches. In this study, sentiment classification techniques were applied to movie reviews. Specifically, we compared two supervised machine learning approaches SVM, Naive Bayes for Sentiment Classification of Reviews. Results states that Naïve Bayes approach outperformed the SVM. If the training dataset had a large number of reviews, Naive bayes approach reached high accuraciesas compare to other
Chemical-genetic profiling to investigate cross-resistance and collateral sensitivity between antimicrobial peptides
Antimicrobial peptides (AMPs) are crucial components of the host immune system and have been proposed as promising novel anti-infectives. However, there is a serious concern that therapeutic application of AMPs would drive bacterial cross-resistance to our own immunity peptides. Our knowledge of cross-resistance between AMPs remains extremely limited. To address this gap, we used chemical-genetic approaches to uncover the resistance determinants of E. coli against 15 different AMPs. This comprehensive compendium revealed multiple and functionally diverse genes that modulate bacterial susceptibility to different AMPs. Interestingly, AMPs differ considerably in their resistance determinants, and resistance-enhancing genes overlap only to a limited extent between AMPs. As a consequence, collateral sensitivity effects were common: numerous genes decreased susceptibility to one AMP while simultaneously sensitized to others. Finally, by integrating laboratory evolution approach, we showed that our chemical-genetic map informed on the cross-resistance interactions between AMPs. In the future, the chemical-genetic map could inform efforts to avoid cross-resistance between therapeutic and human host AMPs
Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings
Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption
Rationally designed foldameric adjuvants enhance antibiotic efficacy via promoting membrane hyperpolarization
The negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization. When co-administered as an adjuvant, the resulting compounds - PGLb1 and PGLb2 - have substantially reduced the level of antibiotic resistance of multi-drug resistant Escherichia coli, Klebsiella pneumoniae and Shigella flexneri clinical isolates. The observed antibiotic potentiation was mediated by hyperpolarization of the bacterial membrane caused by the alteration of cellular ion transport. Specifically, PGLb1 and PGLb2 are selective ionophores that enhance the Goldman-Hodgkin-Katz potential across the bacterial membrane. These findings indicate that manipulating bacterial membrane electrophysiology could be a valuable tool to overcome antimicrobial resistance
Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system
The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence
Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn
Rationally Designed Foldameric Adjuvants Enhance Antibiotic Efficacy via Promoting Membrane Hyperpolarization
The negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization. When co-administered as an adjuvant, the resulting compounds – PGLb1 and PGLb2 – have substantially reduced the level of antibiotic resistance of multi-drug resistant Escherichia coli, Klebsiella pneumoniae and Shigella flexneri clinical isolates. The observed antibiotic potentiation was mediated by hyperpolarization of the bacterial membrane caused by the alteration of cellular ion transport. Specifically, PGLb1 and PGLb2 are selective ionophores that enhance the Goldman–Hodgkin–Katz potential across the bacterial membrane. These findings indicate that manipulating bacterial membrane electrophysiology could be a valuable tool to overcome antimicrobial resistance
Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains
Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities
Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota
The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of
immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome
are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance
genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP
resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance
genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating
from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically
susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the
genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition
of the human microbiota, with implications for disease risks