70 research outputs found
Genetic diversity fuels gene discovery for tobacco and alcohol use
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1,2,3,4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction
Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing
Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction
Effects of warming and eutrophication on coastal phytoplankton production
Phytoplankton production in coastal waters influences seafood production and human health and can lead to harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton production, although the combined effects of warming and nutrient changes on phytoplankton production in coastal waters are not well understood. To address this, phytoplankton production changes in natural waters were investigated using samples collected over eight months, and under 64 different initial conditions, established by combining four different water temperatures (i.e., ambient T, + 2, + 4, and + 6 degrees C), and two different nutrient conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on phytoplankton production was significantly positive in some months, significantly negative in others, or had no effect. However, under enriched conditions, warming affected phytoplankton production positively in all months except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration to chlorophyll a concentration [NCCA, mu M (pg L-1)(-1))] was one of the most critical factors determining the directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched waters was >= 1.2, warming increased or did not change phytoplankton production with one exception; however, when NCCA was < 1.2, warming did not change or decreased production. In the time series data obtained from the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is suggested that NCCA could be used as an index for predicting future phytoplankton production changes in coastal waters.11Ysciescopu
Estimating the number of severe COVID-19 cases and COVID-19-related deaths averted by a nationwide vaccination campaign in Republic of Korea
Objectives The Korea Disease Control and Prevention Agency promotes vaccination by regularly providing information on its benefits for reducing the severity of coronavirus disease 2019 (COVID-19). This study aimed to analyze the number of averted severe COVID-19 cases and COVID-19-related deaths by age group and quantify the impact of Republic of Korea’s nationwide vaccination campaign. Methods We analyzed an integrated database from the beginning of the vaccination campaign on February 26, 2021 to October 15, 2022. We estimated the cumulative number of severe cases and COVID-19-related deaths over time by comparing observed and estimated cases among unvaccinated and vaccinated groups using statistical modeling. We compared daily age-adjusted rates of severe cases and deaths in the unvaccinated group to those in the vaccinated group and calculated the susceptible population and proportion of vaccinated people by age. Results There were 23,793 severe cases and 25,441 deaths related to COVID-19. We estimated that 119,579 (95% confidence interval [CI], 118,901–120,257) severe COVID-19 cases and 137,636 (95% CI, 136,909–138,363) COVID-19-related deaths would have occurred if vaccination had not been performed. Therefore, 95,786 (95% CI, 94,659–96,913) severe cases and 112,195 (95% CI, 110,870–113,520) deaths were prevented as a result of the vaccination campaign. Conclusion We found that, if the nationwide COVID-19 vaccination campaign had not been implemented, the number of severe cases and deaths would have been at least 4 times higher. These findings suggest that Republic of Korea’s nationwide vaccination campaign reduced the number of severe cases and COVID-19 deaths
Two-year Clinical Outcomes of Patients with Long Segments Drug-Eluting Stents: Comparison of Sirolimus-Eluting Stent with Paclitaxel-Eluting Stent
Limited data are available on the long-term clinical efficacy of drug-eluting stent (DES) in diffuse long lesions. From May 2006 to May 2007, a total of 335 consecutive patients (374 lesions) were underwent percutaneous coronary intervention with implantation of long DES (≥ 30 mm) in real world practice. Eight-month angiographic outcomes and 2-yr clinical outcomes were compared between SES (n = 218) and PES (n = 117). Study endpoints were major adverse cardiac events including cardiac death, myocardial infarction, target-lesion revascularization, target-vessel revascularization and stent thrombosis. Baseline characteristics were similar in the two groups as were mean stent length (44.9 ± 15.2 mm in SES and 47.4 ± 15.9 in PES, P = 0.121). Late loss at 8 months follow-up was significantly lower in SES than in PES group (0.4 ± 0.6 mm in SES vs 0.7 ± 0.8 mm in PES, P = 0.007). Mean follow-up duration was 849 ± 256 days, and 2-yr cumulative major adverse cardiac events were significantly lower in the SES than in the PES group (5.5% in SES vs 15.4% in PES, P = 0.003). In conclusion, long-term DES use in diffuse long coronary lesions is associated with favorable results, with SES being more effective and safer than PES in this real-world clinical experience
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
- …