120 research outputs found

    Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    Get PDF
    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures

    Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri

    Get PDF
    Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter-and intraspecies genomic variation. We further predicted 17,903 carbohydrateactive enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Comparative Analysis of the Abilities of Shiga Toxins 1 and 2 To Bind to and Influence Neutrophil Apoptosis

    No full text
    Hemolytic-uremic syndrome (HUS), the life-threatening complication following infection by the intestinal pathogen Escherichia coli O157:H7, is due to the ability of the pathogen to produce toxins in the Shiga toxin (Stx) family. Activated neutrophils are observed in HUS patients, yet it is unclear whether Stx exerts a direct effect on neutrophils or whether the toxin acts indirectly. The effect of Stx1 and Stx2 on human neutrophils was examined. Neither Stx1 nor Stx2 altered the rate of neutrophil apoptosis. Minimal binding of either toxin to neutrophils was observed, and the toxin was easily eluted from the cells. Stx1 and Stx2 were found to circulate in the plasma of mice following intravenous injection, and both toxins were cleared rapidly from the blood. Together these results suggest that neither Stx1 nor Stx2 interacts directly with neutrophils

    Nonpathogenic Escherichia coli Can Contribute to the Production of Shiga Toxin

    No full text
    The food-borne pathogen, Escherichia coli O157:H7, has been associated with gastrointestinal disease and the life-threatening sequela hemolytic uremic syndrome. The genes for the virulence factor, Shiga toxin 2 (Stx2), in E. coli O157:H7 are encoded on a temperate bacteriophage under the regulation of the late gene promoter. Induction of the phage lytic cycle is required for toxin synthesis and release. We investigated the hypothesis that nonpathogenic E. coli could amplify Stx2 production if infected with the toxin-encoding phage. Toxin-encoding phage were incubated with E. coli that were either susceptible or resistant to the phage. The addition of phage to phage-susceptible bacteria resulted in up to 40-fold more toxin than a pure culture of lysogens, whereas the addition of phage to phage-resistant bacteria resulted in significantly reduced levels of toxin. Intestinal E. coli isolates incubated with Shiga toxin-encoding phage produced variable amounts of toxin. Of 37 isolates, 3 produced significantly more toxin than was present in the inoculum, and 1 fecal isolate appeared to inactivate the toxin. Toxin production in the intestine was assessed in a murine model. Fecal toxin recovery was significantly reduced when phage-resistant E. coli was present. These results suggest that the susceptibility of the intestinal flora to the Shiga toxin phage could exert either a protective or an antagonistic influence on the severity of disease by pathogens with phage-encoded Shiga toxin. Toxin production by intestinal flora may represent a novel strategy of pathogenesis

    Commensal Bacteria Influence Escherichia coli O157:H7 Persistence and Shiga Toxin Production in the Mouse Intestine

    No full text
    The presence of commensal flora reduced colonization of Escherichia coli O157:H7 and production of Shiga toxin (Stx) in the murine intestine. Stx production was not detected in mice colonized with E. coli that were resistant to the Shiga toxin phage, but it was detected in mice colonized with phage-susceptible E. coli

    Potent Adjuvant Activity of Cationic Liposome-DNA Complexes for Genital Herpes Vaccines▿

    No full text
    Development of a herpes simplex virus (HSV) vaccine is a priority because these infections are common. It appears that potent adjuvants will be required to augment the immune response to subunit HSV vaccines. Therefore, we evaluated cationic liposome-DNA complexes (CLDC) as an adjuvant in a mouse model of genital herpes. Using a whole-virus vaccine (HVAC), we showed that the addition of CLDC improved antibody responses compared to vaccine alone. Most important, CLDC increased survival, reduced symptoms, and decreased vaginal virus replication compared to vaccine alone or vaccine administered with monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) following intravaginal challenge of mice. When CLDC was added to an HSV gD2 vaccine, it increased the amount of gamma interferon that was produced from splenocytes stimulated with gD2 compared to the amount produced with gD2 alone or with MPL-alum. The addition of CLDC to the gD2 vaccine also improved the outcome following vaginal HSV type 2 challenge compared to vaccine alone and was equivalent to vaccination with an MPL-alum adjuvant. CLDC appears to be a potent adjuvant for HSV vaccines and should be evaluated further
    corecore