411 research outputs found
Recommended from our members
The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide
We characterized decadal changes in the amplitude and shape of the seasonal cycle of atmospheric CO_2 with three kinds of analysis. First, we calculated the trends in the seasonal cycle of measured atmospheric CO_2 at observation stations in the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory network. Second, we assessed the impact of terrestrial ecosystems in various localities on the mean seasonal cycle of CO_2 at observation stations using the Carnegie‐Ames‐Stanford Approach terrestrial biosphere model and the Goddard Institute for Space Studies (GISS) atmospheric tracer transport model. Third, we used the GISS tracer model to quantify the contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric CO_2 for the period 1961–1990, specifically examining the effects of biomass burning, emissions from fossil fuel combustion, and regional increases in net primary production (NPP). Our analysis supports results from previous studies that indicate a significant positive increase in the amplitude of the seasonal cycle of CO_2 at Arctic and subarctic observation stations. For stations north of 55°N the amplitude increased at a mean rate of 0.66% yr^(−1) from 1981 to 1995. From the analysis of ecosystem impacts on the mean seasonal cycle we find that tundra, boreal forest, and other northern ecosystems are responsible for most of the seasonal variation in CO_2 at stations north of 55°N. The effects of tropical biomass burning on trends in the seasonal cycle are minimal at these stations, probably because of strong vertical convection in equatorial regions. From 1981 to 1990, fossil fuel emissions contributed a trend of 0.20% yr^(−1) to the seasonal cycle amplitude at Mauna Loa and less than 0.10% yr^(−1) at stations north of 55°N. To match the observed amplitude increases at Arctic and subarctic stations with NPP increases, we find that north of 30°N a 1.7 Pg C yr^(−1) terrestrial sink would be required. In contrast, over regions south of 30°N, even large NPP increases and accompanying terrestrial sinks would be insufficient to account for the increase in high‐latitude amplitudes
Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO_2
We examine the sensitivity of the seasonal cycle of heterotrophic respiration to model estimates of litterfall seasonality, herbivory, plant allocation, tissue chemistry, and land use. As a part of this analysis, we compare heterotrophic respiration models based solely on temperature and soil moisture controls (zero‐order models) with models that depend on available substrate as well (first‐order models). As indicators of regional and global CO_2 exchange, we use maps of monthly global net ecosystem production, growing season net flux (GSNF), and simulated atmospheric CO_2 concentrations from an atmospheric tracer transport model. In one first‐order model, CASA, variations on the representation of the seasonal flow of organic matter from plants to heterotrophs can increase global GSNF as much as 60% (5.7 Pg C yr^(−1)) above estimates obtained from a zero‐order model. Under a new first‐order scheme that includes separate seasonal dynamics for leaf litterfall, fine root mortality, coarse woody debris, and herbivory, we observe an increase in GSNF of 8% (0.7 Pg C yr^(−1)) over that predicted by the zero‐order model. The increase in seasonality of CO2 exchange in first‐order models reflects the dynamics of labile litter fractions; specifically, the rapid decomposition of a pulse of labile leaf and fine root litter that enters the heterotrophic community primarily from the middle to the end of the growing season shifts respiration outside the growing season. From the perspective of a first‐order model, we then explore the consequences of land use change and winter temperature anomalies on the amplitude of the seasonal cycle of atmospheric CO_2. Agricultural practices that accelerate decomposition may drive a long‐term increase in the amplitude, independent of human impacts on plant production. Consideration of first‐order litter decomposition dynamics may also help explain year‐to‐year variation in the amplitude
Recommended from our members
Do functional status and Medicare claims data improve the predictive accuracy of an electronic health record mortality index? Findings from a national Veterans Affairs cohort
BackgroundElectronic health record (EHR) prediction models may be easier to use in busy clinical settings since EHR data can be auto-populated into models. This study assessed whether adding functional status and/or Medicare claims data (which are often not available in EHRs) improves the accuracy of a previously developed Veterans Affairs (VA) EHR-based mortality index.MethodsThis was a retrospective cohort study of veterans aged 75 years and older enrolled in VA primary care clinics followed from January 2014 to April 2020 (n = 62,014). We randomly split participants into development (n = 49,612) and validation (n = 12,402) cohorts. The primary outcome was all-cause mortality. We performed logistic regression with backward stepwise selection to develop a 100-predictor base model using 854 EHR candidate variables, including demographics, laboratory values, medications, healthcare utilization, diagnosis codes, and vitals. We incorporated functional measures in a base + function model by adding activities of daily living (range 0-5) and instrumental activities of daily living (range 0-7) scores. Medicare data, including healthcare utilization (e.g., emergency department visits, hospitalizations) and diagnosis codes, were incorporated in a base + Medicare model. A base + function + Medicare model included all data elements. We assessed model performance with the c-statistic, reclassification metrics, fraction of new information provided, and calibration plots.ResultsIn the overall cohort, mean age was 82.6 years and 98.6% were male. At the end of follow-up, 30,263 participants (48.8%) had died. The base model c-statistic was 0.809 (95% CI 0.805-0.812) in the development cohort and 0.804 (95% CI 0.796-0.812) in the validation cohort. Validation cohort c-statistics for the base + function, base + Medicare, and base + function + Medicare models were 0.809 (95% CI 0.801-0.816), 0.811 (95% CI 0.803-0.818), and 0.814 (95% CI 0.807-0.822), respectively. Adding functional status and Medicare data resulted in similarly small improvements among other model performance measures. All models showed excellent calibration.ConclusionsIncorporation of functional status and Medicare data into a VA EHR-based mortality index led to small but likely clinically insignificant improvements in model performance
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model
© 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 2099-2120, doi:10.5194/bg-6-2099-2009Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO2 concentration and associated anthropogenic climate change will be reduced as additional climate models introduce carbon-nitrogen cycle interactions in their land components.This work was supported
in part by NASA Earth Science Enterprise, Terrestrial Ecology
Program, grant #W19,953 to P. E. Thornton. Support was provided
by the National Center for Atmospheric Research (NCAR) through
the NCAR Community Climate System Modeling program,
and through the NCAR Biogeosciences program. Additional
support was provided by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research.
I. Fung, S. Doney, N. Mahowald, and J. Randerson acknowledge
support from National Science Foundation, Atmospheric Sciences
Division, through the Carbon and Water Initiative
The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide
We characterized decadal changes in the amplitude and shape of the seasonal cycle of atmospheric CO_2 with three kinds of analysis. First, we calculated the trends in the seasonal cycle of measured atmospheric CO_2 at observation stations in the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory network. Second, we assessed the impact of terrestrial ecosystems in various localities on the mean seasonal cycle of CO_2 at observation stations using the Carnegie‐Ames‐Stanford Approach terrestrial biosphere model and the Goddard Institute for Space Studies (GISS) atmospheric tracer transport model. Third, we used the GISS tracer model to quantify the contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric CO_2 for the period 1961–1990, specifically examining the effects of biomass burning, emissions from fossil fuel combustion, and regional increases in net primary production (NPP). Our analysis supports results from previous studies that indicate a significant positive increase in the amplitude of the seasonal cycle of CO_2 at Arctic and subarctic observation stations. For stations north of 55°N the amplitude increased at a mean rate of 0.66% yr^(−1) from 1981 to 1995. From the analysis of ecosystem impacts on the mean seasonal cycle we find that tundra, boreal forest, and other northern ecosystems are responsible for most of the seasonal variation in CO_2 at stations north of 55°N. The effects of tropical biomass burning on trends in the seasonal cycle are minimal at these stations, probably because of strong vertical convection in equatorial regions. From 1981 to 1990, fossil fuel emissions contributed a trend of 0.20% yr^(−1) to the seasonal cycle amplitude at Mauna Loa and less than 0.10% yr^(−1) at stations north of 55°N. To match the observed amplitude increases at Arctic and subarctic stations with NPP increases, we find that north of 30°N a 1.7 Pg C yr^(−1) terrestrial sink would be required. In contrast, over regions south of 30°N, even large NPP increases and accompanying terrestrial sinks would be insufficient to account for the increase in high‐latitude amplitudes
Recommended from our members
Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO_2
We examine the sensitivity of the seasonal cycle of heterotrophic respiration to model estimates of litterfall seasonality, herbivory, plant allocation, tissue chemistry, and land use. As a part of this analysis, we compare heterotrophic respiration models based solely on temperature and soil moisture controls (zero‐order models) with models that depend on available substrate as well (first‐order models). As indicators of regional and global CO_2 exchange, we use maps of monthly global net ecosystem production, growing season net flux (GSNF), and simulated atmospheric CO_2 concentrations from an atmospheric tracer transport model. In one first‐order model, CASA, variations on the representation of the seasonal flow of organic matter from plants to heterotrophs can increase global GSNF as much as 60% (5.7 Pg C yr^(−1)) above estimates obtained from a zero‐order model. Under a new first‐order scheme that includes separate seasonal dynamics for leaf litterfall, fine root mortality, coarse woody debris, and herbivory, we observe an increase in GSNF of 8% (0.7 Pg C yr^(−1)) over that predicted by the zero‐order model. The increase in seasonality of CO2 exchange in first‐order models reflects the dynamics of labile litter fractions; specifically, the rapid decomposition of a pulse of labile leaf and fine root litter that enters the heterotrophic community primarily from the middle to the end of the growing season shifts respiration outside the growing season. From the perspective of a first‐order model, we then explore the consequences of land use change and winter temperature anomalies on the amplitude of the seasonal cycle of atmospheric CO_2. Agricultural practices that accelerate decomposition may drive a long‐term increase in the amplitude, independent of human impacts on plant production. Consideration of first‐order litter decomposition dynamics may also help explain year‐to‐year variation in the amplitude
Nitrogen Controls on Climate Model Evapotranspiration
Most evapotranspiration over land occurs through vegetation. The fraction of net radiation balanced by evapotranspiration depends on stomatal controls. Stomates transpire water for the leaf to assimilate carbon, depending on the canopy carbon demand, and on root uptake, if it is limiting. Canopy carbon demand in turn depends on the balancing between visible photon-driven and enzyme-driven steps in the leaf carbon physiology. The enzyme-driven component is here represented by a Rubisco-related nitrogen reservoir that interacts with plant–soil nitrogen cycling and other components of a climate model. Previous canopy carbon models included in GCMs have assumed either fixed leaf nitrogen, that is, prescribed photosynthetic capacities, or an optimization between leaf nitrogen and light levels so that in either case stomatal conductance varied only with light levels and temperature.A nitrogen model is coupled to a previously derived but here modified carbon model and includes, besides the enzyme reservoir, additional plant stores for leaf structure and roots. It also includes organic and mineral reservoirs in the soil; the latter are generated, exchanged, and lost by biological fixation, deposition and fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. The root nutrient uptake model is a novel and simple, but rigorous, treatment of soil transport and root physiological uptake. The other soil components are largely derived from previously published parameterizations and global budget constraints.The feasibility of applying the derived biogeochemical cycling model to climate model calculations of evapotranspiration is demonstrated through its incorporation in the Biosphere–Atmosphere Transfer Scheme land model and a 17-yr Atmospheric Model Inter comparison Project II integration with the NCAR CCM3 GCM. The derived global budgets show land net primary production (NPP), fine root carbon, and various aspects of the nitrogen cycling are reasonably consistent with past studies. Time series for monthly statistics averaged over model grid points for the Amazon evergreen forest and lower Colorado basin demonstrate the coupled interannual variability of modeled precipitation, evapotranspiration, NPP, and canopy Rubisco enzymes
Formation of Super-Earths
Super-Earths are the most abundant planets known to date and are
characterized by having sizes between that of Earth and Neptune, typical
orbital periods of less than 100 days and gaseous envelopes that are often
massive enough to significantly contribute to the planet's overall radius.
Furthermore, super-Earths regularly appear in tightly-packed multiple-planet
systems, but resonant configurations in such systems are rare. This chapters
summarizes current super-Earth formation theories. It starts from the formation
of rocky cores and subsequent accretion of gaseous envelopes. We follow the
thermal evolution of newly formed super-Earths and discuss their atmospheric
mass loss due to disk dispersal, photoevaporation, core-cooling and collisions.
We conclude with a comparison of observations and theoretical predictions,
highlighting that even super-Earths that appear as barren rocky cores today
likely formed with primordial hydrogen and helium envelopes and discuss some
paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of
Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio
Belmonte and Hans Deeg, Ed
Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.This work was
supported by the U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research (KP1202030) to J. K. B and by
NSFATM-9987457 to I. F. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Division of Chemical Sciences, Geosciences, and
Biosciences of the U.S. Department of Energy at Lawrence Berkeley
National Laboratory under contract DE-AC03-76SF00098
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
- …