107 research outputs found

    The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap‐phase regeneration

    Get PDF
    1 Regeneration in forest canopy gaps is thought to lead invariably to the rapid recruitment and growth of trees and the redevelopment of the canopy. Our observations, however, suggest that an alternate successional pathway is also likely, whereby gap‐phase regeneration is dominated by lianas and stalled in a low‐canopy state for many years. We investigated gap‐phase regeneration in an old‐growth tropical forest on Barro Colorado Island (BCI) in Panama to test the following two hypotheses: (i) many gaps follow a pathway in which they remain at a low canopy height and are dominated by lianas and (ii) the paucity of trees in this pathway is a function of liana density. 2 We surveyed a total of 428 gaps of varying ages (c. 5, c. 10, and 13+ years old) and identified those which followed the conventional pathway of regeneration and others that remained stalled in a low‐canopy state for many years and were dominated by either lianas or palms. Each of these pathways will likely have different successional trajectories that will favour the growth of a distinct suite of mature species and ultimately result in contrasting species composition. 3 The successional pathway of liana‐dominated, stalled gaps is common throughout the forest. We estimate conservatively that 7.5% of the gaps that form each year will follow this pathway, probably due to the suppression of tree regeneration by lianas, and that many of these stalled gaps will persist for much longer than 13 years. Consequently, a high proportion of gaps in the forest at any given time will be stalled. Furthermore, liana tangles, which persist in the tropical forest understorey for extended periods of time, almost certainly originate in these gaps. 4 Liana abundance was positively correlated with pioneer tree abundance and diversity while negatively correlated with non‐pioneer tree abundance and diversity. Thus, lianas appear to inhibit non‐pioneer tree survival while indirectly enhancing that of pioneer trees. 5 Lianas are abundant in many types of tropical and temperate forests and a successional pathway involving liana‐dominated, stalled gaps may therefore be frequent and widespread

    Why are tropical conifers disadvantaged in fertile soils? Comparison of Podocarpus guatemalensis with an angiosperm pioneer, Ficus insipida

    Get PDF
    Conifers are, for the most part, competitively excluded from tropical rainforests by angiosperms. Where they do occur, conifers often occupy sites that are relatively infertile. To gain insight into the physiological mechanisms by which angiosperms outcompete conifers in more productive sites, we grew seedlings of a tropical conifer (Podocarpus guatemalensis Standley) and an angiosperm pioneer (Ficus insipida Willd.) with and without added nutrients, supplied in the form of a slow-release fertilizer. At the conclusion of the experiment, the dry mass of P. guatemalensis seedlings in fertilized soil was approximately twofold larger than that of seedlings in unfertilized soil; on the other hand, the dry mass of F. insipida seedlings in fertilized soil was similar to 20-fold larger than seedlings in unfertilized soil. The higher relative growth rate of F. insipida was associated with a larger leaf area ratio and a higher photosynthetic rate per unit leaf area. Higher overall photosynthetic rates in F. insipida were associated with an approximately fivefold larger stomatal conductance than in P. guatemalensis. We surmise that a higher whole-plant hydraulic conductance in the vessel bearing angiosperm F. insipida enabled higher leaf area ratio and higher stomatal conductance per unit leaf area than in the tracheid bearing P. guatemalensis, which enabled F. insipida to capitalize on increased photosynthetic capacity driven by higher nitrogen availability in fertilized soil

    LA DINÁMICA DEL BOSQUE DE MONTAÑA EN LA RESERVA FORESTAL DE FORTUNA, CHIRIQUÍ

    Get PDF
    Regional and global climate change is expected to have particularly strong effects on tropical montane forests where species are often distributed along narrow elevational or environmental gradients. Nonetheless, base-line data on the distribution, growth and survival of montane forest trees, which could be used to detect climate change effects do not exist. Over the last six years we have established a network of six one hectare permanent forest plots arrayed across a gradient of soil nutrient availability and rainfall in the Fortuna and Palo Seco Forest Reserves. In 2008 we recensused the plots to give the first measure of growth and survival. Concurrent with the recensus we have completed identification of 376 shrub and tree species in our plots. Preliminary analyses of these data indicate that the species composition is strongly constrained by environment variables. In addition to monitoring growth and survival, we have also initiated measurements of the major components of litterfall (leaves, branches, fruit and flowers) in each plot, and completed soil nutrient and soil carbon measurements as a means to assess temporal variation in forest productivity and carbon storage. This project represents a model partnership between research and education in the west of Panama. To date, 12 undergraduate students have worked on the project, and we have supported thesis research of five students.    Existe la expectativa que los cambios climáticos tendrán un efecto negativo especialmente en los bosques de montaña, donde las especies están distribuidas a lo largo de gradientes ambientales restringido y estrechos. Sin embargo, aún no existen datos de referencia o básicos sobre la distribución, tasas de crecimiento y mortalidad de los árboles de montaña que puedan ser usados para determinar la influencia de los cambios climáticos. Durante los últimos seis años se ha establecido una red de seis parcelas de una hectárea a través de un gradiente de lluvia y fertilidad de suelos en las reservas de Fortuna y Palo Seco. En el 2008, terminó la primera repetición del censo de las parcelas para obtener medidas de crecimiento y mortalidad de los árboles. Al mismo tiempo, se completó la identificación de 376 especies de árboles y arbustos dentro de las parcelas. Un análisis preliminar de los datos de la repetición del censo indica que las comunidades de árboles están fuertemente afectadas por las variables ambientales. Además del monitoreo de crecimiento y mortalidad, también se iniciaroin mediciones de los componentes de hojarasca (hojas, flores, frutos, corteza, ramas) en cada parcela, y se completaron medidas sobre la disponibilidad de nutrientes y contenido de carbono en el suelo. El presente proyecto representa un consorcio modelo entre la investigación y la educación en el oeste de Panamá. A través del proyecto han participado 12 estudiantes de licenciatura de universidades en Panamá y se dio apoyo a las tesis de licenciatura de cinco estudiantes.&nbsp

    Nutrient Availability in Tropical Rain Forests: The Paradigm of Phosphorus Limitation

    Get PDF
    Abstract A long-standing paradigm in tropical ecology is that phosphorus (P) availability limits the productivity of most lowland forests, with the largest pool of plant-available P resident in biomass. Evidence that P limits components of productivity is particularly strong for sites in Panama and the Amazon basin. Analyses of forest communities in Panama also show that tree species distributions are strongly affected by P availability at the regional scale, but that their local distributions in a single site on Barro Colorado Island (BCI) are as frequently correlated with base cations as with P. Traits associated with species sensitivity to P availability require more detailed exploration, but appear to show little similarity with those associated with N limitation in temperate forests. Recent research indicates that a large fraction of P in tropical forests exists as organic and microbial P in the soil; plant adaptations to access organic P, including the synthesis of phosphatase enzymes, likely represent critical adaptations to low P environments. Plants also cope with low P availability through increases in P use-efficiency resulting from increased retention time of P in biomass and decreased tissue P concentration. Although foliar P responds strongly to P addition, we show here that foliar P and N:P are highly variable within communities, and at BCI correlate with regional species distributional affinity for P. An improved understanding of P limitation, and in particular the plasticity of responses to P availability, will be critical to predicting community and ecosystem responses of tropical forests to climate change

    Resource‐based habitat associations in a neotropical liana community

    Get PDF
    Summary 1. Lianas are a conspicuous element of many tropical forests, accounting for up to 40% of woody stem density and 20% of species richness in seasonal forests. However, lianas have seldom been surveyed at sufficiently large spatial scales to allow an assessment of the importance of habitat variables in structuring liana communities. 2. We compare the association patterns of 82 liana species and an equivalent sample of tree species on the 50 ha Forest Dynamics Project plot on Barro Colorado Island, Panama, with topographic habitat variables (high and low plateau, slope, swamp and streamside), and thirteen mapped soil chemical variables. In addition, we test for liana species associations with canopy disturbance using a canopy height map of the plot generated using light detection and ranging. 3. For all liana species combined, densities differed among topographic habitat types in the plot, with significantly higher densities on the seasonally drier lower plateau habitat (1044 individuals ha−1) than the moister slope habitat (729 individuals ha−1). Lianas were also significantly more abundant than expected in areas with low canopy height. 4. The proportion of liana species associated with one or more topographic habitat variables (44%) was significantly lower than that for trees (66%). Similarly, liana species were significantly less frequently associated with PC axes derived from soil chemical variables (21%) than trees (52%). The majority of liana species (63%) were significantly associated with areas of the plot with low canopy height reflecting an affinity for treefall gaps. 5. Synthesis. The habitat associations detected here suggest that liana density is associated primarily with canopy disturbance, and to a lesser extent with topography and soil chemistry. Relative to trees, few liana species were associated with local variation in topography and soil chemistry, suggesting that nutrient availability exerts only weak effects on liana community composition compared to trees. Results from this study support the contention that increases in forest disturbance rates are a driver of recently observed increases in liana abundance and biomass in neotropical forests

    Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna

    Get PDF
    1. Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation. 2. To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non-native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers. 3. Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna. 4. We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite-driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities. 5. Synthesis. Ecosystem-scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite-driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world-wide

    Liana Abundance, Diversity, and Distribution on Barro Colorado Island, Panama

    Get PDF
    Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests

    Soil resources and topography shape local tree community structure in tropical forests

    Get PDF
    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24-50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9-34% and 5-29%, respectively), and all environmental variables together explain 13-39% of compositional variation within a plot. A large fraction of variation (19-37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. © 2012 The Author(s) Published by the Royal Society. All rights reserved
    corecore