1,986 research outputs found

    Adverse Effects of Trichothiodystrophy DNA Repair and Transcription Gene Abnormalities on Human Fetal Development

    Get PDF
    The effects of DNA repair and transcription genes in human prenatal life have never been studied. Trichothiodystrophy (TTD) is a rare (affected frequency of 10^-6^) recessive disorder caused by mutations in genes involved in the nucleotide excision repair (NER) pathway and in transcription. Based on our clinical observations, we conducted a genetic epidemiologic study to investigate gestational outcomes associated with TTD. We compared pregnancies resulting in TTD-affected offspring (N=24) with respect to abnormalities in their antenatal and neonatal periods to pregnancies resulting in their unaffected siblings (N=18), accounting for correlation, and to population reference values. Significantly higher incidence of several severe gestational complications was noted in TTD-affected pregnancies. Gestational complications were noted in nearly all pregnancies resulting in TTD-affected offspring with _XPD_ and _TTDN1_, but not _TTD-A_, gene mutations. Abnormal placental development may explain the constellation of observed complications; therefore, we hypothesize that some TTD genes play an important role in normal placental and fetal development. We investigated this hypothesis by analyzing the expression patterns of TTD genes. Expression of _TTDA_ was strongly negatively correlated (r=-0.7,P<0.0001) with gestational age, while _XPD, XPB_ and _TTDN1_ were consistently expressed from 14 to 40 weeks gestation. *Conclusion:* Our results indicate an important role for _XPD, XPB_ and _TTDN1_ gene products during normal human placental and fetal development

    Per Family Error Rates: A Response

    Get PDF
    As the authors note, the familywise error rate (FWER) is used rather often, whereas the per-family error rate (PFER) is not. Is this as it should be? It would seem that no universal answer is possible, as context determines which is more appropriate in any given application. In the general scenario of testing the benefit of an intervention, one might ideally want an error rate that aligns with the decision for benefit. In most cases the FWER does this pretty well, while allowing one to identify those endpoints for which benefit exists. The PFER does not seem to have any advantage over the FWER in this general testing scenario. Perhaps in some other scenarios the PFER might have some reasonable role

    Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects.

    Get PDF
    BackgroundNeural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.MethodsReplication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case-control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case-control models and NTD groupings in white, African American and Hispanic cohorts from NYS.ResultsOf the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.ConclusionsWe report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis

    Maternal overweight and obesity and risk of congenital heart defects in offspring

    Full text link
    Objective Obesity is a risk factor for congenital heart defects (CHD), but whether risk is independent of abnormal glucose metabolism is unknown. Data on whether overweight status increases risk is also conflicting. Research Design and Methods We included 121815 deliveries from a cohort study, the Consortium on Safe Labor, after excluding women with pregestational diabetes as recorded in the electronic medical record. CHD were identified via medical record discharge summaries. Adjusted odds ratios (OR) for any CHD were calculated for prepregnancy body mass index (BMI) categories of overweight (25 to \u3c30 kg/m2), obese (30 to \u3c40 kg/m2), and morbidly obese (≥40 kg/m2) compared to normal weight (18.5 to \u3c25 kg/m2) women, and for specific CHD with obese groups combined (≥30 kg/m2). A sub-analysis adjusting for oral glucose tolerance test (OGTT) results where available was performed as a proxy for potential abnormal glucose metabolism present at the time of organogenesis. Results There were 1388 (1%) infants with CHD. Overweight (OR=1.15 95% CI: 1.01–1.32), obese (OR=1.26 95% CI: 1.09, 1.44), and morbidly obese (OR=1.34 95% CI: 1.02–1.76) women had greater odds of having a neonate with CHD than normal weight women (P\u3c 0.001 for trend). Obese women (BMI ≥30 kg/m2) had higher odds of having an infant with conotruncal defects (OR=1.34 95%CI: 1.04–1.72), atrial septal defects (OR =1.22 95% CI: 1.04–1.43), and ventricular septal defects (OR=1.38 95% CI: 1.06–1.79). Being obese remained a significant predictor of CHD risk after adjusting for OGTT. Conclusion Increasing maternal weight class was associated with increased risk for CHD. In obese women, abnormal glucose metabolism did not completely explain the increased risk for CHD; the possibility that other obesity-related factors are teratogenic requires further investigation

    Association analysis of complex diseases using triads, parent-child dyads and singleton monads

    Get PDF
    Background: Triad families are routinely used to test association between genetic variants and complex diseases. Triad studies are important and popular since they are robust in terms of being less prone to false positives due to population structure. In practice, one may collect not only complete triads, but also incomplete families such as dyads (affected child with one parent) and singleton monads (affected child without parents). Since there is a lack of convenient algorithms and software to analyze the incomplete data, dyads and monads are usually discarded. This may lead to loss of power and insufficient utilization of genetic information in a study. Results: We develop likelihood-based statistical models and likelihood ratio tests to test for association between complex diseases and genetic markers by using combinations of full triads, parent-child dyads, and affected singleton monads for a unified analysis. A likelihood is calculated directly to facilitate the data analysis without imputation and to avoid computational complexity. This makes it easy to implement the models and to explain the results. Conclusion: By simulation studies, we show that the proposed models and tests are very robust in terms of accurately controlling type I error evaluations, and are powerful by empirical power evaluations. The methods are applied to test for association between transforming growth factor alpha (TGFA) gene and cleft palate in an Irish study

    Maternal and neonatal outcomes by labor onset type and gestational age.

    Get PDF
    OBJECTIVE: We sought to determine maternal and neonatal outcomes by labor onset type and gestational age. STUDY DESIGN: We used electronic medical records data from 10 US institutions in the Consortium on Safe Labor on 115,528 deliveries from 2002 through 2008. Deliveries were divided by labor onset type (spontaneous, elective induction, indicated induction, unlabored cesarean). Neonatal and maternal outcomes were calculated by labor onset type and gestational age. RESULTS: Neonatal intensive care unit admissions and sepsis improved with each week of gestational age until 39 weeks (P \u3c .001). After adjusting for complications, elective induction of labor was associated with a lower risk of ventilator use (odds ratio [OR], 0.38; 95% confidence interval [CI], 0.28-0.53), sepsis (OR, 0.36; 95% CI, 0.26-0.49), and neonatal intensive care unit admissions (OR, 0.52; 95% CI, 0.48-0.57) compared to spontaneous labor. The relative risk of hysterectomy at term was 3.21 (95% CI, 1.08-9.54) with elective induction, 1.16 (95% CI, 0.24-5.58) with indicated induction, and 6.57 (95% CI, 1.78-24.30) with cesarean without labor compared to spontaneous labor. CONCLUSION: Some neonatal outcomes improved until 39 weeks. Babies born with elective induction are associated with better neonatal outcomes compared to spontaneous labor. Elective induction may be associated with an increased hysterectomy risk

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    corecore