63 research outputs found

    Simultaneous Biochar and Syngas Production in a Top-Lit Updraft Biomass Gasifier

    Get PDF
    Biomass materials can be converted to a wide variety of products, e.g., biochar and syngas through thermochemical conversions. In this study, the thermochemical conversion of biomass residues was carried out in a top-lit updraft gasifier. This gasifier type has been extensively used in developing countries to reduce air pollutants in biomass burning while cooking. However, little literature is found related to the quality and quantification of the products. The goal of this study was to investigate top-lit updraft gasification as a potential alternative to the production of biochar and syngas from biomass residues. The first objective was to understand the effect of the airflow rate and insulation on the overall top-lit updraft gasification process through the quantification of the products and co-products. The results showed that increasing the airflow rate from 8 to 20 lpm proportionally increased the reaction temperature up to 868oC. This increase in temperature negatively impacted the produced biochar which decreased (e.g., from 39.3% to 31.3%, rice hulls – with insulation) with the increase in airflow rate. Little effect in the syngas composition was noticed when varying the airflow, but significant reduction of the tar content (e.g., from 58.7 to 11.8 g/m3, wood chips – without insulation) was observed with the addition of insulation and increase of airflow, enhancing the quality of the produced biochar. The second objective was to investigate the effect of airflow rate and insulation on the properties of the produced biochar. The properties of the biochar were significantly affected by the airflow and the insulation, but their variations were also governed by the properties of the biomass. Due to the large amount of ash in rice hulls (23%), biochar presented decreasing carbon content as the air flow increased, which was opposite to wood chips biochar because of the low ash content in the untreated wood chips (0.57%). In addition, the BET surface area of the biochar increased up to 332 m2 /g when increasing the airflow, but it further increased to 405 m2 /g with the addition of insulation.Biomass materials can be converted to a wide variety of products, e.g., biochar and syngas through thermochemical conversions. In this study, the thermochemical conversion of biomass residues was carried out in a top-lit updraft gasifier. This gasifier type has been extensively used in developing countries to reduce air pollutants in biomass burning while cooking. However, little literature is found related to the quality and quantification of the products. The goal of this study was to investigate top-lit updraft gasification as a potential alternative to the production of biochar and syngas from biomass residues. The first objective was to understand the effect of the airflow rate and insulation on the overall top-lit updraft gasification process through the quantification of the products and co-products. The results showed that increasing the airflow rate from 8 to 20 lpm proportionally increased the reaction temperature up to 868oC. This increase in temperature negatively impacted the produced biochar which decreased (e.g., from 39.3% to 31.3%, rice hulls – with insulation) with the increase in airflow rate. Little effect in the syngas composition was noticed when varying the airflow, but significant reduction of the tar content (e.g., from 58.7 to 11.8 g/m3, wood chips – without insulation) was observed with the addition of insulation and increase of airflow, enhancing the quality of the produced biochar. The second objective was to investigate the effect of airflow rate and insulation on the properties of the produced biochar. The properties of the biochar were significantly affected by the airflow and the insulation, but their variations were also governed by the properties of the biomass. Due to the large amount of ash in rice hulls (23%), biochar presented decreasing carbon content as the air flow increased, which was opposite to wood chips biochar because of the low ash content in the untreated wood chips (0.57%). In addition, the BET surface area of the biochar increased up to 332 m2 /g when increasing the airflow, but it further increased to 405 m2 /g with the addition of insulation

    Guía para la integración de un turbocargador a un motor de combustión interna con bio-oil como combustible.

    Get PDF
    Este folleto tiene como objetivo servir como referencia para la implementación de un turbocargador en un motor de combuetión interna. Los cálculos aquí presentados son una referencia al desarrollo de esta actividad. Para tener un mejor manejo de la información presentada en el presente documento, se deberá tener el pre-requisito d elas asignaturas: Termodinámica I y II, Mecánica de Fluidos I y II, Diseño Mecánico y Mecanismos. Los turbocargadores aprovechan la energía de los gases de escape, y la utilizan para suministrar aire al motor a una presión más elevada, aumentando la cantidad de aire y por consiguiente combustible en los cilindros. En este documento, se plantean los conceptos, métodos y condiciones para la implementación de un turbocargador en un motor diesel de una barcaza con una potencia de aproximada de 1500 HP, utilizando bio-oil como combustible alternativo, en este caso a partir de switchgrass. Se seleccionó un motor diesel CAT 3516 E, y tomando en cuenta las consideraciones para la operación de este con bio-oil, se realizan los cálculos de emisiones y eficiencia a diferentes velocidades de operación. Luego, se establecen los parámetros y formulaciones necesarias para seleccionar una configuración de turbocargador adecuada, junto al diseño y simulación de un intercooler basado en diseños de la compañía Bell Intercooler. La configuración final permite conseguir un motor con turbocargador capaz de suplir la potencia requerida de 1500 hp, que no iguala a la potencia que se puede generar utilizando diesel debido al reducido poder calorífico del bio-oil, pero consigue mantener la eficiencia térmica y una disminución significativa de emisiones.Este folleto tiene como objetivo servir como referencia para la implementación de un turbocargador en un motor de combuetión interna. Los cálculos aquí presentados son una referencia al desarrollo de esta actividad. Para tener un mejor manejo de la información presentada en el presente documento, se deberá tener el pre-requisito d elas asignaturas: Termodinámica I y II, Mecánica de Fluidos I y II, Diseño Mecánico y Mecanismos. Los turbocargadores aprovechan la energía de los gases de escape, y la utilizan para suministrar aire al motor a una presión más elevada, aumentando la cantidad de aire y por consiguiente combustible en los cilindros. En este documento, se plantean los conceptos, métodos y condiciones para la implementación de un turbocargador en un motor diesel de una barcaza con una potencia de aproximada de 1500 HP, utilizando bio-oil como combustible alternativo, en este caso a partir de switchgrass. Se seleccionó un motor diesel CAT 3516 E, y tomando en cuenta las consideraciones para la operación de este con bio-oil, se realizan los cálculos de emisiones y eficiencia a diferentes velocidades de operación. Luego, se establecen los parámetros y formulaciones necesarias para seleccionar una configuración de turbocargador adecuada, junto al diseño y simulación de un intercooler basado en diseños de la compañía Bell Intercooler. La configuración final permite conseguir un motor con turbocargador capaz de suplir la potencia requerida de 1500 hp, que no iguala a la potencia que se puede generar utilizando diesel debido al reducido poder calorífico del bio-oil, pero consigue mantener la eficiencia térmica y una disminución significativa de emisiones

    Implementación de un Intercambiador de Calor en Techos de Zinc

    Get PDF
    The research aims to develop a compact prototype with low visual impact that is able to take advantage of solar energy to heat water collected from rain. The methodology used involves a study of the art of these systems, which was complemented by a research of related patents. The mathematical concepts governing heat transfer for these types of systems were analyzed and then simulated in Autodesk CFD. We also rely on the TRNSYS simulation software to estimate the temperature values that can reach Zinc roofs under tropical climatic conditions such as Panama. The system was built and tested, obtaining results such as reaching temperatures in the water very close to the surface temperatures of zinc. The decrease in the amount of heat entering the residence was also visualized.Keywords: heat exchanger, Solar Energy, Water Heater, Rainwater harvesting, Zinc Roo

    Folleto de Uso de Celdas Peltier para la creación de proyectos que incentiven a los estudiantes de las comunidades de difícil acceso para optar por bachilleres científicos

    Get PDF
    Actualmente, el cuarenta por ciento (40%) de los jóvenes que se encuentran recibiendo clases han abandonado sus estudios en nuestro país (según datos del MEDUCA de Octubre de 2019); existen diversos motivos que conducen a los estudiantes a esta difícil decisión, lo que preocupa grandemente a las autoridades ya que el futuro de Panamá está en manos de los estudiantes y si no empezamos con proyectos para disminuir estos porcentajes, las cifras en los siguientes años irán en aumento. Queriendo hacer un aporte a nuestra sociedad, se da esta iniciativa para incentivar a los jóvenes de la Escuela de Ciricito Arriba en Capira a continuar sus estudios de media y dirigirlos a tomar bachilleres científicos ya que actualmente muchos de los estudiantes de la comunidad optan por la deserción escolar. Aportando a su formación integral, los estudiantes de la carrera de Ingeniería Electromecánica de sexto semestre realizaron un proyecto final para la materia de mecánica de fluidos II. Se les propuso la idea de construir prototipos utilizando celdas Peltier para ejecutar proyectos sencillos y que llamaran la atención de los escolares de la comunidad, de esta manera invitarlos y entusiasmarlos a elaborar proyectos utilizando materiales sencillos para incrementar su aprendizaje. Nuestra labor con los alumnos de la carrera de electromecánica fue desde el día uno brindar asesoría y colaborarles en todo lo que necesitaran para culminar satisfactoriamente sus trabajos. Siete grupos de tres estudiantes cada, los cuales no solo debían construir el proyecto sino también elaborar guías de laboratorio para que los muchachos pudieran guiarse de ellas y de esta forma trabajar con los proyectos en un futuro. Con esto queremos exhortar a la comunidad educativa de la UTP, a que realicen actividades y proyectos de este tipo, la mejor manera de poner en práctica los conocimientos aprendidos en las aulas es creando ideas innovadoras que resulten útiles, no solo para nosotros como futuros ingenieros, sino también para la sociedad.Actualmente, el cuarenta por ciento (40%) de los jóvenes que se encuentran recibiendo clases han abandonado sus estudios en nuestro país (según datos del MEDUCA de Octubre de 2019); existen diversos motivos que conducen a los estudiantes a esta difícil decisión, lo que preocupa grandemente a las autoridades ya que el futuro de Panamá está en manos de los estudiantes y si no empezamos con proyectos para disminuir estos porcentajes, las cifras en los siguientes años irán en aumento. Queriendo hacer un aporte a nuestra sociedad, se da esta iniciativa para incentivar a los jóvenes de la Escuela de Ciricito Arriba en Capira a continuar sus estudios de media y dirigirlos a tomar bachilleres científicos ya que actualmente muchos de los estudiantes de la comunidad optan por la deserción escolar. Aportando a su formación integral, los estudiantes de la carrera de Ingeniería Electromecánica de sexto semestre realizaron un proyecto final para la materia de mecánica de fluidos II. Se les propuso la idea de construir prototipos utilizando celdas Peltier para ejecutar proyectos sencillos y que llamaran la atención de los escolares de la comunidad, de esta manera invitarlos y entusiasmarlos a elaborar proyectos utilizando materiales sencillos para incrementar su aprendizaje. Nuestra labor con los alumnos de la carrera de electromecánica fue desde el día uno brindar asesoría y colaborarles en todo lo que necesitaran para culminar satisfactoriamente sus trabajos. Siete grupos de tres estudiantes cada, los cuales no solo debían construir el proyecto sino también elaborar guías de laboratorio para que los muchachos pudieran guiarse de ellas y de esta forma trabajar con los proyectos en un futuro. Con esto queremos exhortar a la comunidad educativa de la UTP, a que realicen actividades y proyectos de este tipo, la mejor manera de poner en práctica los conocimientos aprendidos en las aulas es creando ideas innovadoras que resulten útiles, no solo para nosotros como futuros ingenieros, sino también para la sociedad

    Thermal insulation material produced from recycled materials for building applications: cellulose and rice husk-based material

    Get PDF
    Construction materials derived from agro-industrial waste are increasingly attractive in the building sector, due to their sustainability and lower environmental impact. Hence, in recent years worldwide the amount of research and publications tending to the development of materials that take advantage of residues from agro-industrial activities has increased. The role of thermal insultation materials in the building envelope is significant, especially in hot-humid region. This study presents the manufacturing and evaluation of a cellulose and rice husk-based insulation material, as a proposal for the reuse of materials considered as value-added waste, such as recycled paper and rice husks. Boards and test specimens were elaborated, as well as mechanical and thermal tests. The material was evaluated by means of thermal tests, in accordance with ASTM C177, to measure the thermal conductivity. Tensile and compressive strength tests were performed, based on ASTM C209 and ASTM C39 Standard, respectively. According to the results obtained, the material shows a thermal coefficient of 0.04 W/m∙K which corresponds to a material with the potential to thermally insulate an enclosure. Maximum stresses were obtained for the 3 compositions in average for a range between 1.31 and 1.76 MPa. Ultimate compressive strength obtained was between 20.19 and 21.23 MPa. The proposed material is presented as a sustainable alternative, which can be used in the field of environmentally friendly buildings, which contribute to reducing the carbon footprint, by energy savings

    The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips

    Get PDF
    The performance of a top-lit updraft gasifier affected by biomass (pine wood) particle size, moisture content and compactness was studied in terms of the biochar yield, biomass burning rate, syngas composition and tar content. The highest biochar yield increase (from 12.2% to 21.8%) was achieved by varying the particle size from 7 to 30 mm, however, larger particles triggered tar generation that reached its maximum of 93.5 g/m3 syngas at 30-mm biomass particles; in contrast, the hydrogen content in syngas was at its minimum of 2.89% at this condition. The increase in moisture content from 10% to 22% reduced biochar yield from 12% to 9.9%. It also reduced the tar content from 12.9 to 6.2 g/m3 which was found to be the lowest range of tar content in this work. Similarly, the carbon monoxide composition in syngas decreased to its minimum of 11.16% at moisture content of 22%. Finally, the biomass compactness increased biochar yield up to 17% when the packing mass was 3 kg. However, the addition of compactness also increased the tar content in syngas, but little effect was noticed in syngas composition.The performance of a top-lit updraft gasifier affected by biomass (pine wood) particle size, moisture content and compactness was studied in terms of the biochar yield, biomass burning rate, syngas composition and tar content. The highest biochar yield increase (from 12.2% to 21.8%) was achieved by varying the particle size from 7 to 30 mm, however, larger particles triggered tar generation that reached its maximum of 93.5 g/m3 syngas at 30-mm biomass particles; in contrast, the hydrogen content in syngas was at its minimum of 2.89% at this condition. The increase in moisture content from 10% to 22% reduced biochar yield from 12% to 9.9%. It also reduced the tar content from 12.9 to 6.2 g/m3 which was found to be the lowest range of tar content in this work. Similarly, the carbon monoxide composition in syngas decreased to its minimum of 11.16% at moisture content of 22%. Finally, the biomass compactness increased biochar yield up to 17% when the packing mass was 3 kg. However, the addition of compactness also increased the tar content in syngas, but little effect was noticed in syngas composition

    Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier

    Get PDF
    The objective of this study was to understand the effect of airflow and insulation on syngas and biochar generations of rice hulls and woodchips in a top-lit updraft gasifier. Biochar yield decreased with increasing airflow. The highest biochar yields of 39% and 27% were achieved at 8 L/min airflow for rice hulls and woodchips, respectively. The mass fraction of syngas in the products increased with increasing airflow, which ranged from 88–89% for rice hulls and 93–94% for woodchips. The H2 composition in syngas also increased at higher airflow rates; it peaked at 4.2–4.4% for rice hulls and 5.7–6.6% (v/v) for woodchips, which was not affected by insulation. The carbon monoxide content in syngas ranged from approximately 12 to 15% (v/v) and was not affected by airflow or insulation. Average tar content in syngas decreased for both biomasses when airflow increased, but adding insulation resulted in significantly higher tar content in syngas. The biomass type also had significant effects on gasifier performance. Biochar yields from rice hulls were greater than that from woodchips at all airflow rates. The lowest tar contents in syngas were approximately 1.16 and 11.88 g/m3 for rice hulls and woodchips, respectively.The objective of this study was to understand the effect of airflow and insulation on syngas and biochar generations of rice hulls and woodchips in a top-lit updraft gasifier. Biochar yield decreased with increasing airflow. The highest biochar yields of 39% and 27% were achieved at 8 L/min airflow for rice hulls and woodchips, respectively. The mass fraction of syngas in the products increased with increasing airflow, which ranged from 88–89% for rice hulls and 93–94% for woodchips. The H2 composition in syngas also increased at higher airflow rates; it peaked at 4.2–4.4% for rice hulls and 5.7–6.6% (v/v) for woodchips, which was not affected by insulation. The carbon monoxide content in syngas ranged from approximately 12 to 15% (v/v) and was not affected by airflow or insulation. Average tar content in syngas decreased for both biomasses when airflow increased, but adding insulation resulted in significantly higher tar content in syngas. The biomass type also had significant effects on gasifier performance. Biochar yields from rice hulls were greater than that from woodchips at all airflow rates. The lowest tar contents in syngas were approximately 1.16 and 11.88 g/m3 for rice hulls and woodchips, respectively

    The Effect of Gasification Conditions on the Surface Properties of Biochar Produced in a Top-Lit Updraft Gasifier

    Get PDF
    The effect of airflow rate, biomass moisture content, particle size, and compactness on the surface properties of biochar produced in a top-lit updraft gasifier was investigated. Pine woodchips were studied as the feedstock. The carbonization airflow rates from 8 to 20 L/min were found to produce basic biochars (pH > 7.0) that contained basic functional groups. No acid functional groups were presented when the airflow increased. The surface charge of biochar at varying airflow rates showed that the cation exchange capacity increased with airflow. The increase in biomass moisture content from 10 to 14% caused decrease in the pH from 12 to 7.43, but the smallest or largest particle sizes resulted in low pH; therefore, the carboxylic functional groups increased. Similarly, the biomass compactness exhibited a negative correlation with the pH that reduced with increasing compactness level. Thus, the carboxylic acid functional groups of biochar increased from 0 to 0.016 mmol g−1, and the basic functional group decreased from 0.115 to 0.073 mmol g−1 when biomass compactness force increased from 0 to 3 kg. BET (Brunauer-Emmett-Teller) surface area of biochar was greater at higher airflow and smaller particle size, lower moisture content, and less compactness of the biomassThe effect of airflow rate, biomass moisture content, particle size, and compactness on the surface properties of biochar produced in a top-lit updraft gasifier was investigated. Pine woodchips were studied as the feedstock. The carbonization airflow rates from 8 to 20 L/min were found to produce basic biochars (pH > 7.0) that contained basic functional groups. No acid functional groups were presented when the airflow increased. The surface charge of biochar at varying airflow rates showed that the cation exchange capacity increased with airflow. The increase in biomass moisture content from 10 to 14% caused decrease in the pH from 12 to 7.43, but the smallest or largest particle sizes resulted in low pH; therefore, the carboxylic functional groups increased. Similarly, the biomass compactness exhibited a negative correlation with the pH that reduced with increasing compactness level. Thus, the carboxylic acid functional groups of biochar increased from 0 to 0.016 mmol g−1, and the basic functional group decreased from 0.115 to 0.073 mmol g−1 when biomass compactness force increased from 0 to 3 kg. BET (Brunauer-Emmett-Teller) surface area of biochar was greater at higher airflow and smaller particle size, lower moisture content, and less compactness of the biomas

    Estudio de las investigaciones realizadas en el programa de maestría en ciencias de la ingeniería mecánica Universidad Tecnológica de Panamá

    Get PDF
    En este documento se presenta un estudio sobre la relación de cada una de las investigaciones que han sido desarrolladas en el Programa de Maestría en Ciencias de la Ingeniería Mecánica y su pertinencia con el Plan Estratégico Nacional de Ciencia y Tecnología e Innovación (PENCYT). Las investigaciones y actividades mas recientes que se han desarrollado en el Programa se han incluido en las Memorias de actividades del Programa 2016-2017. El Programa de Maestría en Ciencias de la Ingeniería Mecánica surge con el objetivo de formar profesionales especializados en los campos de la ingeniería renovable, ambiente, robótica, automatización, manufactura y materiales, por medio del desarrollo de investigaciones que cumplan con el me todo científico, para fortalecer la academia de Ingeniería Mecánica, los Centros de Investigación de la Universidad Tecnológica de Panamá y el sector productivo del país.En este documento se presenta un estudio sobre la relación de cada una de las investigaciones que han sido desarrolladas en el Programa de Maestría en Ciencias de la Ingeniería Mecánica y su pertinencia con el Plan Estratégico Nacional de Ciencia y Tecnología e Innovación (PENCYT). Las investigaciones y actividades mas recientes que se han desarrollado en el Programa se han incluido en las Memorias de actividades del Programa 2016-2017. El Programa de Maestría en Ciencias de la Ingeniería Mecánica surge con el objetivo de formar profesionales especializados en los campos de la ingeniería renovable, ambiente, robótica, automatización, manufactura y materiales, por medio del desarrollo de investigaciones que cumplan con el me todo científico, para fortalecer la academia de Ingeniería Mecánica, los Centros de Investigación de la Universidad Tecnológica de Panamá y el sector productivo del país

    Cross-cutting principles for planetary health education

    Get PDF
    Since the 2015 launch of the Rockefeller Foundation Lancet Commission on planetary health,1 an enormous groundswell of interest in planetary health education has emerged across many disciplines, institutions, and geographical regions. Advancing these global efforts in planetary health education will equip the next generation of scholars to address crucial questions in this emerging field and support the development of a community of practice. To provide a foundation for the growing interest and efforts in this field, the Planetary Health Alliance has facilitated the first attempt to create a set of principles for planetary health education that intersect education at all levels, across all scales, and in all regions of the world—ie, a set of cross-cutting principles
    corecore