45 research outputs found
Nanoliter high throughput quantitative PCR
Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput. The hybrid approach described here combines the superior accuracy, precision and dynamic range of RT-PCR with the parallelism of a microarray in an array of 3072 real time, 33 nl polymerase chain reactions (RT-PCRs) the size of a microscope slide. RT-PCR is demonstrated with an accuracy and precision equivalent to the same assay in a 384-well microplate but in a 64-fold smaller reaction volume, a 24-fold higher analytical throughput and a workflow compatible with standard microplate protocols
Palaeotectonic setting of the south-eastern Kédougou-Kéniéba Inlier, West Africa: new insights from igneous trace element geochemistry and U-Pb zircon ages
New U-Pb zircon ages and geochemistry from the eastern Kédougou-Kéniéba Inlier are presented and integrated with published data to generate a revised tectonic framework for the westernmost Birimian terranes. The Falémé Volcanic Belt and Kofi Series are highly prospective, hosting several multi-million ounce gold deposits and a significant iron ore resource, but remain under-researched. It is therefore important to constrain the fundamental geological setting. The igneous rocks of the eastern Kédougou-Kéniéba Inlier are dominantly of high-K calc-alkaline affinity, with fractionated REE patterns and negative Nb-Ta anomalies. The plutonic rocks in the Falémé Belt are dioritic to granodioritic in composition, with moderately fractionated REE patterns and metaluminous A/CNK signatures. Felsic, peraluminous granite stocks, dykes and plutons with fractionated REE patterns and negative Eu, Ti and P anomalies intruded both the Falémé Belt and Kofi Series. Albitisation masks the affinity of some units, although use of the Th-Co diagram shows that prior to albitisation, all igneous units belonged to the high-K calc-alkaline series. New U-Pb age data for the Boboti and Balangouma plutons indicate crystallisation at 2088.5 ± 8.5 Ma and at 2112 ± 13 Ma, respectively. Inherited zircons in the Boboti pluton indicate magmatic activity in the Falémé Belt at 2218 ± 83 Ma coincided with the oldest dated units in the Mako Belt to the West. Systematic changes in Dy/Yb, Sm/La, Nb/Zr, Rb concentration, Eu-anomaly and ɛNdt over ∼200 Ma reveal that the tectonic setting in the KKI evolved from a volcanic island arc environment to an active continental margin. Crustal thickening, as a result of a shift to collisional tectonic setting, combined with magmatic differentiation, led to the generation of peraluminous, granitic melts with a significant crustal component. A small suite of more basic intrusive and extrusive rocks on the eastern margin of the Dialé-Daléma basin are highly metaluminous and display limited LILE enrichment, with normalised HREE values close to unity. The Daléma igneous rocks may have formed in an extensional back arc, related to the arc system
Summary of phase compositions of experimental silicate melt, un-normalised analyses
The solubility of Re and Au in haplobasaltic melt has been investigated at 1673–2573 K, 0.1 MPa–2 GPa and IW-1 to +2.5, in both carbon-saturated and carbon-free systems. Results extend the existing, low pressure and temperature, dataset to more accurately predict the results of metal-silicate equilibrium at the base of a terrestrial magma ocean. Solubilities in run-product glasses were measured by laser ablation ICP-MS, which allows for the explicit assessment of contamination by metal inclusions. The Re and Au content of demonstrably contaminant-free glasses increases with temperature, and shows variation with oxygen fugacity (fO2) similar to previous results, although lower valence states for Re (1+, 2+) are suggested by the data. At 2 GPa, and Delta IW of +1.75 to +2, the metal-silicate partition coefficient for Re (DMet/Sil) is defined by the relation
LogD[met/sil][Re] = 0.50(±0.022)*10**4/T(K)+3.73(±0.095)
For metal-silicate equilibrium to endow Earth's mantle with the observed time-integrated chondritic Re/Os, (and hence 187Os/188Os), DMet/Sil for both elements must converge to a common value. Combined with previously measured DMet/Sil for Os, the estimated temperature at which this convergence occurs is 4500 (±900) K. At this temperature, however, the Re and Os content of the equilibrated silicate is ~100-fold too low to explain mantle abundances. In the same experiments, much lower Dmet/sil values have been determined for Au, and require the metal-silicate equilibration temperature to be <3200 K, as hotter conditions result in an excess of Au in the mantle. Thus, the large disparity in partitioning between Re or Os, and Au at core-forming temperatures argues against their mantle concentrations set solely by metal-silicate equilibrium at the base of a terrestrial magma ocean
Grain Boundary Diffusion of Re, Os, Pt, and Pb, in Olivine Aggregate in Presence of Sulfide
International audienc
Abundance of highly siderophile elements in lunar basalts controlled by iron sulfide melt
The Moon accreted meteoritic material towards the end of Solar System formation. Quantification of this late accretion requires an estimation of the abundance of highly siderophile, or iron-loving, elements in the lunar mantle. As lunar mantle samples are not available, estimates are derived from lunar basalt compositions, but the melting phase relations needed to derive the mantle composition are poorly constrained. Here we present sulfur solubility measurements from laboratory experiments, combined with thermodynamic calculations, which show that the lunar basalt source is likely to be saturated in a sulfur-poor, iron-rich sulfide melt that concentrates some highly siderophile elements more than others. We found that the observed range in the ratios of highly siderophile elements in primitive lunar basalts is much smaller than expected from residual sulfide control alone. Instead, the elemental ratios are consistent with mixing between primary sulfide-saturated melts and minute (<1%) amounts of lunar regolith that contain impact debris. Although the composition of some samples suggests a highly depleted lunar mantle, the exact level of depletion is unclear, because mixing trajectories overlap at the inferred level of regolith contamination. We conclude that the composition of the lunar mantle is veiled by regolith contamination of the lunar basalts. If so, highly siderophile element abundances in lunar mantle-derived materials cannot be used to determine the mass of material accreted late onto the Moon