6,062 research outputs found

    Microarray analysis of spring barley cultivars displaying differing sensitivity to physiological leaf spot (PLS)

    Get PDF
    peer-reviewedPhysiological leaf spot (PLS) is a disorder of spring barley (Hordeum vulgare L.), which has become more pronounced in recent years. The initial symptoms are small chlorotic/brown spots on the upper four leaves, which may develop into necrotic lesions with an irregular shape. As PLS occurs on leaves that are directly exposed to sunlight, it is thought that high light stress could be a trigger for the condition. This study concentrates on two cultivars, Cooper and Crusader, which display differential sensitivity to PLS. Biochemical measurements and enzyme assays revealed substantial difference in levels of ascorbate, type III peroxidases, and superoxide dismutase between the chosen cultivars during the 2003 growing season. A global gene expression study, using these field samples, was performed by microarray analysis. This supported the biochemical findings and highlighted additional sets of genes differentially expressed between the cultivars. Transcripts of particular interest, which appeared, included calcium signalling genes, cold-responsive genes and those involved in the assembly of Photosystem I. We conclude that susceptibility to PLS is related to levels of expression of genes with a role in countering the effects of oxidative stress.Teagasc Walsh Fellowship Programm

    Chapter 4: Insurance Law

    Get PDF

    Chapter 13: Insurance Law

    Get PDF

    SMA Imaging of the Maser Emission from the H30α\alpha Radio Recombination Line in MWC349A

    Get PDF
    We used the Submillimeter Array to map the angular distribution of the H30α\alpha recombination line (231.9 GHz) in the circumstellar region of the peculiar star MWC349A. The resolution was 1\farcs2, but because of high signal-to-noise ratio we measured the positions of all maser components to accuracies better than 0\farcs01, at a velocity resolution of 1kms1 kms. The two strongest maser components (called high velocity components) at velocities near -14 and 32kms32 kms are separated by 0\farcs048 \pm 0\farcs001 (60 AU) along a position angle of 102 \pm 1\arcdeg. The distribution of maser emission at velocities between and beyond these two strongest components were also provided. The continuum emission lies at the center of the maser distribution to within 10 mas. The masers appear to trace a nearly edge-on rotating disk structure, reminiscent of the water masers in Keplerian rotation in the nuclear accretion disk of the galaxy NGC4258. However, the maser components in MWC349A do not follow a simple Keplerian kinematic prescription with v∌r−1/2v \sim r^{-1/2}, but have a larger power law index. We explore the possibility that the high velocity masers trace spiral density or shock waves. We also emphasize caution in the interpretation of relative centroid maser positions where the maser is not clearly resolved in position or velocity, and we present simulations that illustrate the range of applicability of the centroiding method.Comment: 23 pages with 9 figures (two of these figures are vertically aligned as Figure 4) submitted to the Astrophysical Journa

    Proper Motion of Water Masers Associated with IRAS 21391+5802: Bipolar Outflow and an AU-Scale Dusty Circumstellar Shell

    Get PDF
    We present VLBA observations of water maser emission associated with the star-forming region IRAS 21391+5802, which is embedded in a bright rimmed cometary globule in IC1396. The angular resolution of the maps is about 0.8 mas, corresponding to a spatial resolution of about 0.6 AU, at an estimated distance of 750 pc. Proper motions are derived for 10 maser features identified consistently over three epochs, which were separated by intervals of about one month. The masers appear in four groups, which are aligned linearly on the sky, roughly along a northeast-southwest direction, with a total separation of about 520 AU (about 0.7 arcseconds). The 3-D velocities of the masers have a maximum value of about 42 km/s (about 9 AU/yr). The average error on the derived proper motions is about 4 km/s. The overall pattern of proper motions is indicative of a bipolar outflow. Proper motions of the masers in a central cluster, with a projected extent of about 20 AU, show systematic deviations from a radial outflow. However, we find no evidence of Keplerian rotation, as has been claimed elsewhere. A nearly circular loop of masers lies near the middle of the cluster. The radius of this loop is 1 AU and the line-of-sight velocities of the masers in the loop are within 2 km/s of the systemic velocity of the region. These masers presumably exist at the radial distance where significant dust condensation occurs in the outflow emanating from the star.Comment: 15 pages, 4 figures. Accepted for publication in the Astrophysical Journal. Version 2.12.00: Astrometric coordinates of maser revise

    Probing the Magnetic Field at Sub-Parsec Radii in the Accretion Disk of NGC 4258

    Full text link
    We present an analysis of polarimetric observations at 22 GHz of the water vapor masers in NGC 4258 obtained with the VLA and the GBT. We do not detect any circular polarization in the spectrum indicative of Zeeman-induced splitting of the maser lines of water, a non-paramagnetic molecule. We have improved the 1-sigma upper limit estimate on the toroidal component of the magnetic field in the circumnuclear disk of NGC 4258 at a radius of 0.2 pc from 300 mG to 90 mG. We have developed a new method for the analysis of spectra with blended features and derive a 1-sigma upper limit of 30 mG on the radial component of the magnetic field at a radius of 0.14 pc. Assuming thermal and magnetic pressure balance, we estimate an upper limit on the mass accretion rate of ~10^(-3.7) M_sun/yr for a total magnetic field of less than 130 mG. We discuss the ramifications of our results on current maser models proposed to explain the observed maser emission structure and the consequences for current accretion theories. We find from our magnetic field limits that the thin-disk model and the jet-disk model are better candidates for accounting for the extremely low-luminosity nature of NGC 4258, than models that include advection-dominated accretion flows.Comment: 20 pages, including 10 figures and 2 tables. Accepted for publication in the Astrophysical Journa

    Atmospheric Phase Correction Using Total Power Radiometry at the Submillimeter Array

    Full text link
    Phase noise caused by an inhomogeneous, time-variable water vapor distribution in our atmosphere reduces the angular resolution, visibility amplitude and coherence time of millimeter and submillimeter wavelength interferometers. We present early results from our total power radiometry phase correction experiment carried out with the Submillimeter Array on Mauna Kea. From accurate measurements of the atmospheric emission along the lines of sight of two elements of the array, we estimated the differential atmospheric electrical path between them. In one test, presented here, the phase correction technique reduced the rms phase noise at 230 GHz from 72\degr to 27\degr over a 20 minute period with a 2.5 second integration time. This corresponds to a residual differential electrical path of 98 Ό\mum, or 15 Ό\mum of precipitable water vapor, and raises the coherence in the 20 minute period from 0.45 to 0.9.Comment: Accepted for publication in the SMA Special Volume of the ApJ Letters (9 pages of text, 3 figures

    VLBA Imaging of the OH Maser in IIIZw35

    Get PDF
    We present a parsec-scale image of the OH maser in the nucleus of the active galaxy IIIZw35, made using the Very Long Baseline Array at a wavelength of 18 cm. We detected two distinct components, with a projected separation of 50 pc (for D=110 Mpc) and a separation in Doppler velocity of 70 km/s, which contain 50% of the total maser flux. Velocity gradients within these components could indicate rotation of clouds with binding mass densities of ~7000 solar masses per cubic parsec, or total masses of more than 500,000 solar masses. Emission in the 1665-MHz OH line is roughly coincident in position with that in the 1667-MHz line, although the lines peak at different Doppler velocities. We detected no 18 cm continuum emission; our upper limit implies a peak apparent optical depth greater than 3.4, assuming the maser is an unsaturated amplifier of continuum radiation.Comment: 10 pages, 3 figure
    • 

    corecore