223 research outputs found
The impact of mining and mining exploration on range resources and pastoral pursuits in the Pilbara, Gascoyne, Murchison and Goldfields regions of Western Australia
Mining activity occurs very widely over relatively small areas of the rangelands. However, it is an intense landuse which can create significant offsite effects. Mining activity is most common around metamorphic \u27greenstone\u27 belts and broad drainages. Pastoralists reported both benefits and adverse affects as a consequence of mining activity. The main grievances related to unnecessary and excessive disturbance of pastoral land and the failure of operators to inform the pastoralist of their intentions
The UCSC Proteome Browser
The University of California Santa Cruz (UCSC) Proteome Browser provides a wealth of protein information presented in graphical images and with links to other protein-related Internet sites. The Proteome Browser is tightly integrated with the UCSC Genome Browser. For the first time, Genome Browser users have both the genome and proteome worlds at their fingertips simultaneously. The Proteome Browser displays tracks of protein and genomic sequences, exon structure, polarity, hydrophobicity, locations of cysteine and glycosylation potential, Superfamily domains and amino acids that deviate from normal abundance. Histograms show genome-wide distribution of protein properties, including isoelectric point, molecular weight, number of exons, InterPro domains and cysteine locations, together with specific property values of the selected protein. The Proteome Browser also provides links to gene annotations in the Genome Browser, the Known Genes details page and the Gene Sorter; domain information from Superfamily, InterPro and Pfam; three-dimensional structures at the Protein Data Bank and ModBase; and pathway data at KEGG, BioCarta/CGAP and BioCyc. As of August 2004, the Proteome Browser is available for human, mouse and rat proteomes. The browser may be accessed from any Known Genes details page of the Genome Browser at http://genome.ucsc.edu. A user's guide is also available on this website
Magnetic and Structural Properties of NdâFeââââMnâ Solid Solutions
A series of Nd2Fe17-xMnx solid solutions with x values between 0 and and 6 were prepared and analyzed using magnetic measurements, neutron diffraction, and Mössbauer spectroscopy. All of the Nd2Fe17-xMnx samples crystallized in the Th2Zn17-x-type rhombohedral structure. The lattice parameters and unit cell volumes decrease with increasing manganese content up to ⌠x equal to 2, and then increase for higher manganese content. The magnetizations of Nd2Fe17-xMnx decrease with increasing manganese content and Nd2Fe17-xMnx is paramagnetic at room temperature for x greater than 3. The Curie temperature in Nd2Fe17-xMnx solid solutions is maximum for x equal to 0.5 and decreases at a rate of ⌠10° per substituted manganese up to x equal to 3, after which it drops sharply. These results are discussed in terms of the manganese she occupancies in Nd2Fe17-xMnx
Combining thermal imaging with photogrammetry of an active volcano using UAV : an example from Stromboli, Italy
The authors would like to thank the Istituto Nazionale di Geofisica e Vulcanologia â Sezione di Catania (INGVâCT) for granting permission to conduct the UAV surveys over the Stromboli volcano. This work was supported by the School for Early Career Researchers at the University of Aberdeen, UK. Dougal Jerram is partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). The team would like to thank Angelo Cristaudo for logistical help during the fieldwork efforts on Stromboli.Peer reviewedPostprin
Energy applications of ionic liquids
Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation-anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO 2 absorbents for post-combustion CO 2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities
Energy applications of ionic liquids
Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cationâanion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities
Saving the worldâs terrestrial megafauna
From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the worldâs largest carnivores (â„ 15 kg, n = 27) and 60% of the worldâs largest herbivores (â„ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the worldâs most iconic animalsâsuch as gorillas, rhinos, and big cats (figure 2 top row)âand, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them
Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi
Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic populationâencompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity
- âŠ