39,512 research outputs found

    Lake Tahoe bottom characteristics extracted from SHOALS lidar waveform data and compared to backscatter data from a Multibeam echo sounder

    Get PDF
    The waveforms recorded by airborne lidar bathymetry (ALB) systems are currently processed only for depth information. In addition to bathymetry, multibeam echo sounder (MBES) systems provide backscatter data in which regions of different acoustic properties are distinguishable. These regions can often be correlated to different bottom types. Initial attempts to extract equivalent data from the ALB waveforms have confirmed the expectation that such information is encoded in those waveforms. Water clarity, bathymetry, and bottom type control the detailed shapes of ALB waveforms in different ways. Specific features of a bottom-reflected signal can be identified, for example its rise-time and amplitude, and used for clustering and classifying the individual data points. Two data sets from Lake Tahoe are available for comparison: ALB data from the SHOALS (scanning hydrographic operational airborne lidar survey) system of the US Army Corps of Engineers, and Simrad EM1000 MBES data from the USGS. Feature extraction, clustering, and classification of the SHOALS data reveals changes in the optical bottom reflectance characteristics that are echoed in the acoustic bottom backscatter properties

    Energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. An important issue, not only from a theoretical point of view but also for their experimental detection, are their energy properties. We considerably enlarge the scenario of possible energy properties presented by Flach, Kladko, and MacKay [Phys. Rev. Lett. 78, 1207 (1997)]. Breather energies have a positive lower bound if the lattice dimension is greater than or equal to a certain critical value d_c. We show that d_c can generically be greater than two for a large class of Hamiltonian systems. Furthermore, examples are provided for systems where discrete breathers exist but do not emerge from the bifurcation of a band edge plane wave. Some of these systems support breathers of arbitrarily low energy in any spatial dimension.Comment: 4 pages, 4 figure

    Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems

    Full text link
    Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for each given system's observed emergent patterns. Recent developments in information theory, however, suggest quantifying collective organization in a system- and phenomenon-agnostic way: decompose the system's thermodynamic entropy density into a localized entropy, that solely contained in the dynamics at a single location, and a bound entropy, that stored in space as domains, clusters, excitations, or other emergent structures. We compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, the Bethe lattice with coordination number k=3, and the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (in cluster bulk, cluster edges, and the like) and how these affect the dependencies between spins.Comment: 12 pages, 8 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/ising_bmu.ht

    Reactor as a Source of Antineutrinos: Thermal Fission Energy

    Full text link
    Deeper insight into the features of a reactor as a source of antineutrinos is required for making further advances in studying the fundamental properties of the neutrino. The relationship between the thermal power of a reactor and the rate of the chain fission reaction in its core is analyzed.Comment: 15 pages in LaTex and 4 ps figure

    Temperature dependence of the superheating field for superconductors in the high-k London limit

    Full text link
    We study the metastability of the superheated Meissner state in type II superconductors with k >> 1 beyond Ginzburg-Landau theory, which is applicable only in the vicinity of the critical temperature. Within Eilenberger's semiclassical approximation, we use the local electrodynamic response of the superconductor to derive a generalized thermodynamic potential valid at any temperature. The stability analysis of this functional yields the temperature dependence of the superheating field. Finally, we comment on the implications of our results for superconducting cavities in particle accelerators.Comment: 7.5 pages, 2 figure

    ANALYSIS OF RURAL QUALITY OF LIFE AND HEALTH: A SPATIAL APPROACH

    Get PDF
    This paper examines the relationship between quality of life, health and several socioeconomic variables. The analysis utilizes empirical data obtained from a survey questionnaire administered on a random sample of over 2000 residents in twenty-one counties in West Virginia, and spatial data obtained by geocoding the survey respondents' addressees. Quality of life is measured by a three-point categorical measure of overall satisfaction and an ordered probit model is used to examine the relationships. The empirical results are consistent with the theoretical predictions and indicate, for instance, that quality of life satisfaction increases with income and education while it decreases with unemployment.Community/Rural/Urban Development, Consumer/Household Economics,
    • …
    corecore