11 research outputs found

    Historical Changes in Sediment and Phosphorus Loading to the Upper Mississippi River: Mass-Balance Reconstructions From the Sediments of Lake Pepin

    No full text
    Long-term changes in sediment and phosphorus loading to the upper Mississippi River were quantified from an array of 25 sediment cores from Lake Pepin, a large natural impoundment downstream of the Minneapolis-St Paul metropolitan area. Cores were dated and stratigraphically correlated using Pb, Cs, C, magnetic susceptibility, pollen analysis, and loss-on-ignition. All cores show a dramatic increase in sediment accumulation beginning with European settlement in 1830. Accumulation rates are highest and show the greatest post-settlement increases in the upper end of the lake. Present-day sediment-phosphorus concentrations are roughly twice those of pre-settlement times, and the Fe/Al-bound fraction makes up a greater portion of the total. Diatom assemblages record a marked increase in nutrient availability over the last 200 years, changing from clear-water benthic forms and mesotrophic planktonic taxa in pre-settlement times to exclusively planktonic assemblages characteristic of highly eutrophic conditions today. Lake-water total-phosphorus concentrations, estimated by weighted averaging regression and calibration, increased from 50 to 200 μg l during this period. Sediment loading to Lake Pepin from the Mississippi River has increased by an order of magnitude since 1830. Modern fluxes are about 900,000 metric tons annually, and are more than 80% detrital mineral matter. About 17% of the lake\u27s volume in 1830 has been replaced by sediment, and at current accumulation rates the remainder will be filled in another 340 years. Phosphorus accumulation in Lake Pepin sediments has increased 15-fold since 1830, rising from 60 to 900 metric tons annually. This rise represents a sevenfold increase in phosphorus loading from the Mississippi River coupled with more efficient retention of phosphorus inflows by bottom sediments. More efficient trapping of phosphorus in Lake Pepin over the last century resulted from higher rates of sediment burial. The most dramatic changes in nutrient and sediment inputs to Lake Pepin have occurred since 1940, although gradual increases began shortly following European settlement. Sediment accumulation rates rose sharply between 1940 and 1970 and then leveled off, while phosphorus inflows record their largest increases after 1970. © 2009 Springer Science+Business Media B.V. 210 137 14 -

    The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia

    No full text
    Aquatic biota in Central Asia witnesses and faces a changing environment. Because ostracodes contribute to both extant and fossil lacustrine diversity, they can be used to track evolution in water quality. Living ostracode communities in a variety of aquatic habitats of western Mongolia were analyzed in relation to environmental and hydrochemical variables of those habitats, based on presence/absence data from net samples. The sampled water bodies represent broad gradients in ionic concentration and composition. Ostracode community composition of springs differed from all other sampled habitats, which was also reflected in CCA analyses. Our data indicated that the ostracode fauna of western Mongolia shows a high response to calcium content, alkalinity, salinity, temperature, nutrients, and altitude. Species composition and diversity seem to be determined by solute evolution dominated by Ca-depletion. In general, this seems to be an important regulator of lacustrine ostracode species composition in several semi-arid regions. Binary logistic regression was used to predict the occurrence of the most common species with a minimal set of environmental variables. The resulting models showed on average low performance, and mainly demonstrated the potential of such modeling to predict the distribution of typical bio-indicator species

    Environmental history of a closed-basin lake in the US Great Plains: Diatom response to variations in groundwater flow regimes over the last 8500 cal. yr BP

    Get PDF
    Sediment records from closed-basin lakes in the Northern Great Plains (NGP) of North America have contributed significantly to our understanding of regional paleoclimatology. A high-resolution (near decadal) fossil diatom record from Kettle Lake, ND, USA that spans the last 8500 cal. yr BP is interpreted in concert with percent abundance of aragonite in the sediment as an independent proxy of groundwater flow to the lake (and thus lake water level). Kettle Lake has been relatively fresh for the majority of the Holocene, likely because of the coarse substrata and a strong connection to the underlying aquifer. Interpretation of diatom assemblages in four groups indicative of low to high groundwater flow, based on the percent of aragonite in sediments, allow interpretations of arid periods (and probable meromictic lake conditions) that could not be detected based on diatom-based salinity reconstructions alone. At the centennial–millennial scale, the diatom record suggests humid/wet periods from 8351 to 8088, 4364 to 1406 and 872 to 620 cal. yr BP, with more arid periods intervening. During the last ~4500 years, decadal–centennial scale periods of drought have taken place, despite the generally wetter climate. These droughts appear to have had similar impacts on the Kettle Lake hydrology as the “Dust Bowl” era droughts, but were longer in duration

    Nitrogen deposition to lakes in national parks of the western Great Lakes region: Isotopic signatures, watershed retention, and algal shifts

    No full text
    Atmospheric deposition is a primary source of reactive nitrogen (Nr) to undisturbed watersheds of the Great Lakes region of the U.S., raising concerns over whether enhanced delivery over recent decades has affected lake ecosystems. The National Atmospheric Deposition Program (NADP) has been measuring Nr deposition in this region for over 35 years. Here we explore the relationships among NADP-measured Nr deposition, nitrogen stable isotopes (δ15N) in lake sediments, and the response of algal communities in 28 lakes situated in national parks of the western Great Lakes region of the U.S. We find that 36% of the lakes preserve a sediment δ15N record that is statistically correlated with some form of Nr deposition (total dissolved inorganic N, nitrate, or ammonium). Furthermore, measured long-term (since 1982) nitrogen biogeochemistry and inferred critical nitrogen loads suggest that watershed nitrogen retention and climate strongly affect whether sediment δ15N is related to Nr deposition in lake sediment records. Measurements of algal change over the last ~ 150 years suggest that Nr deposition, in-lake nutrient cycling, and watershed inputs are important factors affecting diatom community composition, in addition to direct climatic effects on lake physical limnology. The findings suggest that bulk sediment δ15N does reflect Nr deposition in some instances. In addition, this study highlights the interactive effects of Nr deposition and climate variability

    Chemical and Biological Trends during Lake Evolution in Recently Deglaciated Terrain

    Get PDF
    As newly formed landscapes evolve, physical and biological changes occur that are collectively known as primary succession. Although succession is a fundamental concept in ecology, it is poorly understood in the context of aquatic environments. The prevailing view is that lakes become more enriched in nutrients as they age, leading to increased biological production. Here we report the opposite pattern of lake development, observed from the water chemistry of lakes that formed at various times within the past 10,000 years during glacial retreat at Glacier Bay, Alaska. The lakes have grown more dilute and acidic with time, accumulated dissolved organic carbon and undergone a transient rise in nitrogen concentration, all as a result of successional changes in surrounding vegetation and soils. Similar trends are evident from fossil diatom stratigraphy of lake sediment cores. These results demonstrate a tight hydrologic coupling between terrestrial and aquatic environments during the colonization of newly deglaciated landscapes, and provide a conceptual basis for mechanisms of primary succession in boreal lake ecosystems

    Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain

    No full text
    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) that is thought to be caused by a combination of genetic and environmental factors. To date, considerable evidence has associated Epstein–Barr virus (EBV) infection with disease development. However, it remains controversial whether EBV infects multiple sclerosis brain and contributes directly to CNS immunopathology. To assess whether EBV infection is a characteristic feature of multiple sclerosis brain, a large cohort of multiple sclerosis specimens containing white matter lesions (nine adult and three paediatric cases) with a heterogeneous B cell infiltrate and a second cohort of multiple sclerosis specimens (12 cases) that included B cell infiltration within the meninges and parenchymal B cell aggregates, were examined for EBV infection using multiple methodologies including in situ hybridization, immunohistochemistry and two independent real-time polymerase chain reaction (PCR) methodologies that detect genomic EBV or the abundant EBV encoded RNA (EBER) 1, respectively. We report that EBV could not be detected in any of the multiple sclerosis specimens containing white matter lesions by any of the methods employed, yet EBV was readily detectable in multiple Epstein–Barr virus-positive control tissues including several CNS lymphomas. Furthermore, EBV was not detected in our second cohort of multiple sclerosis specimens by in situ hybridization. However, our real-time PCR methodologies, which were capable of detecting very few EBV infected cells, detected EBV at low levels in only 2 of the 12 multiple sclerosis meningeal specimens examined. Our finding that CNS EBV infection was rare in multiple sclerosis brain indicates that EBV infection is unlikely to contribute directly to multiple sclerosis brain pathology in the vast majority of cases
    corecore