36 research outputs found

    CHARACTERIZATION OF PLUTONIUM CONTAMINATED SOILS FROM THE NEVADA TEST SITE IN SUPPORT OF EVALUATION OF REMEDIATION TECHNOLOGIES

    Get PDF
    ABSTRACT The removal of plutonium from Nevada Test Site (NTS) area soils has previously been attempted using various combinations of attrition scrubbing, size classification, gravitybased separation, flotation, air flotation, segmented gate, bioremediation, magnetic separation and vitrification. Results were less than encouraging, but the processes were not fully optimized. To support additional vendor treatability studies soil from the Clean Slate II site (located on the Tonopah Test Range, north of the NTS) were characterized and tested. These particular soils from the NTS are contaminated primarily with plutonium-239/240 and Am-241. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. The results indicate that about a 40% volume reduction of contaminated soil should be achievable by removing the >300 um size fraction of the soil. Attrition scrubbing does not effect particle size distribution, but does result in a slight shift of plutonium distribution to the fines. As such, attrition scrubbing may be able to slightly increase the ability to separate plutonium-contaminated particles from clean soil. This could add another 5-10% to the mass of the clean soil, bringing the total clean soil to 45-50%. Additional testing would be needed to determine the value of using attrition scrubbing as well as screening the soil through a sieve size slightly smaller than 300 um. Since only attrition scrubbing and wet sieving would be needed to attain this, it would be good to conduct this investigation. Magnetic separation did not work well. The sequential extraction studies indicated that a significant amount of plutonium was soluble in the "organic" and "resistant" extracts. As such chemical extraction based on these or similar extractants should also be considered as a possible treatment approach. WM '03 Conference, February 23-27, 2003 , Tucson, AZ 2 INTRODUCTION The removal of plutonium from Nevada Test Site (NTS) area soils has previously been attempted using various combinations of attrition, scrubbing, size classification, gravitybased separation, flotation, air flotation, segmented gate, bioremediation, magnetic separation, and vitrification (1). Results were less than encouraging, but the processes were not fully optimized. There is an opportunity for significant improvement through the utilization of more in depth studies

    Actinide separations

    No full text

    Transplutonium elementsâe production and recovery

    No full text
    corecore