56 research outputs found

    The Free Radical Scavenger N-Tert-Butyl-α-Phenylnitrone (PBN) Administered to Immature Rats During Status Epilepticus Alters Neurogenesis and Has Variable Effects, Both Beneficial and Detrimental, on Long-Term Outcomes

    Get PDF
    Status epilepticus (SE), especially in immature animals, is known to produce recurrent spontaneous seizures and behavioral comorbidities later in life. The cause of these adverse long-term outcomes is unknown, but it has been hypothesized that free radicals produced by SE may play a role. We tested this hypothesis by treating immature (P25) rats with the free radical scavenger N-tert-butyl-α-phenylnitrone (PBN) at the time of lithium chloride (LiCl)/pilocarpine (PILO)-induced SE. Later, long-term outcomes were assessed. Cognitive impairment (spatial memory) was tested in the Morris water maze (MWM). Emotional disturbances were assessed by the capture test (aggressiveness) and elevated plus maze’s (EPM) test (anxiety). Next, the presence and severity of spontaneous seizures were assessed by continuous video/EEG monitoring for 5 days. Finally, immunochemistry, stereology and morphology were used to assess the effects of PBN on hippocampal neuropathology and neurogenesis. PBN treatment modified the long-term effects of SE in varying ways, some beneficial and some detrimental. Beneficially, PBN protected against severe anatomical damage in the hippocampus and associated spatial memory impairment. Detrimentally, PBN treated animals had more severe seizures later in life. PBN also made animals more aggressive and more anxious. Correlating with these detrimental long-term outcomes, PBN significantly modified post-natal neurogenesis. Treated animals had significantly increased numbers of mature granule cells (GCs) ectopically located in the dentate hilus (DH). These results raise the possibility that abnormal neurogenesis may significantly contribute to the development of post-SE epilepsy and behavioral comorbidities

    Associations of objectively measured and self-reported sleep duration with carotid artery intima media thickness among police officers

    Get PDF
    BACKGROUND: We aimed to examine the association of objectively measured and self-reported sleep duration with carotid artery intima media thickness (IMT) among 257 police officers, a group at high risk for cardiovascular disease (CVD). METHODS: Sleep duration was estimated using actigraphic data and through self-reports. The mean maximum IMT was the average of the largest 12 values scanned bilaterally from three angles of the near and far wall of the common carotid, bulb, and internal carotid artery. Linear and quadratic regression models were used to assess the association of sleep duration with IMT. RESULTS: Officers who had fewer than 5 or 8 hr or more of objectively measured sleep duration had significantly higher maximum IMT values, independent of age. Self-reported sleep duration was not associated with either IMT measure. CONCLUSION: Attainment of sufficient sleep duration may be considered as a possible strategy for atherosclerosis prevention among police officers

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism

    Systematic review of the evidence relating FEV1 decline to giving up smoking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of forced expiratory volume in 1 second (FEV<sub>1</sub>) decline ("beta") is a marker of chronic obstructive pulmonary disease risk. The reduction in beta after quitting smoking is an upper limit for the reduction achievable from switching to novel nicotine delivery products. We review available evidence to estimate this reduction and quantify the relationship of smoking to beta.</p> <p>Methods</p> <p>Studies were identified, in healthy individuals or patients with respiratory disease, that provided data on beta over at least 2 years of follow-up, separately for those who gave up smoking and other smoking groups. Publications to June 2010 were considered. Independent beta estimates were derived for four main smoking groups: never smokers, ex-smokers (before baseline), quitters (during follow-up) and continuing smokers. Unweighted and inverse variance-weighted regression analyses compared betas in the smoking groups, and in continuing smokers by amount smoked, and estimated whether beta or beta differences between smoking groups varied by age, sex and other factors.</p> <p>Results</p> <p>Forty-seven studies had relevant data, 28 for both sexes and 19 for males. Sixteen studies started before 1970. Mean follow-up was 11 years. On the basis of weighted analysis of 303 betas for the four smoking groups, never smokers had a beta 10.8 mL/yr (95% confidence interval (CI), 8.9 to 12.8) less than continuing smokers. Betas for ex-smokers were 12.4 mL/yr (95% CI, 10.1 to 14.7) less than for continuing smokers, and for quitters, 8.5 mL/yr (95% CI, 5.6 to 11.4) less. These betas were similar to that for never smokers. In continuing smokers, beta increased 0.33 mL/yr per cigarette/day. Beta differences between continuing smokers and those who gave up were greater in patients with respiratory disease or with reduced baseline lung function, but were not clearly related to age or sex.</p> <p>Conclusion</p> <p>The available data have numerous limitations, but clearly show that continuing smokers have a beta that is dose-related and over 10 mL/yr greater than in never smokers, ex-smokers or quitters. The greater decline in those with respiratory disease or reduced lung function is consistent with some smokers having a more rapid rate of FEV<sub>1 </sub>decline. These results help in designing studies comparing continuing smokers of conventional cigarettes and switchers to novel products.</p

    Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats

    No full text
    The period around birth is a risky time for stroke in infants, which is associated with two major acute and subacute processes: anatomical damage and seizures. It is unclear as to what extent each of these processes independently contributes to poor outcome. Furthermore, it is unclear whether there is an interaction between the two processes - does seizure activity cause additional brain damage beyond that produced by ischemia and/or does brain damage foster seizures? The model of focal cerebral ischemia induced by the intrahippocampal infusion of endothelin-1 (ET-1) in 12-day-old rat was used to examine the role of the endothelin receptors in the development of focal ischemia, symptomatic acute seizures and neurodegeneration. ET-1 (40pmol/\u3bcl) was infused either alone or co-administered with selective antagonists of ETA (BQ123; 70nmol/\u3bcl) or ETB receptors (BQ788; 70nmol/1\u3bcl). Effects of activation of ETB receptors were studied using selective agonist 4-Ala-ET-1 (40pmol/1\u3bcl). Regional cerebral blood flow (rCBF) and tissue oxygenation (pO2) were measured in anesthetized animals with a Doppler-flowmeter and a pO2-sensor, respectively. Seizure development was assessed with video-EEG in freely moving rats. Controls received the corresponding volume of the appropriate vehicle (10mM PBS or 0.01% DMSO-PBS solution; pH7.4). The extent of hippocampal lesion was determined using FluoroJade B staining performed 24h after ET-1 infusion. Infusion of ET-1 or ET-1+ETB receptor antagonist reduced rCBF to ~25% and pO2 to ~10% for about 1.5h, whereas selective ETB agonist, ET-1+ETA antagonist and the PBS vehicle had only negligible effect on the rCBF and pO2 levels. Reduction of rCBF was associated with the development of lesion in the injected hippocampus. In all groups, except sham operated and PBS controls, epileptiform activity was observed after activation of the ETA or the ETB receptors. The data revealed a positive correlation between the severity of morphological damage and all the measured seizure parameters (seizure frequency, average and total seizure duration) in the ET-1 group. In addition, the severity of morphological damage positively correlated with the average seizure duration in animals after infusion of ET-1+ETA receptor antagonist or after infusion of ET-1+ETB receptor antagonist. Our results indicate that the activation of ETA receptors is crucial for ischemia development, however either ETA or ETB receptors mediate the development of seizures following the application of ET-1 in immature rats. The dissociation between the ischemic-producing and seizure-producing processes suggests that damage is not necessary to induce seizures, although it may exacerbate them

    A new type of decollement thrusting

    No full text
    One of the fundamental rules of decollement tectonics is that decollement horizons form in mechanically weak layers. Here we document two examples of decollement-style thrust faults that detach within thick platformal dolostones in preference to apparently weaker layers of shale, siltstone and limestone underlying the dolostones. The thrusts are the Keystone–Muddy Mountain–Glendale thrust system (the KMG thrust system), , and the underlying Contact–Red Spring–North Buffiington–Mormon thrust system (the CRM thrust system), both of southern Nevada. They form part of the Sevier orogenic belt, and extend for roughly 250km along strike, together showing at least 65 km tectonic overlap (Fig. 1). Although the thrust systems are closely related spatially, the higher KMG system is younger than the underlying CRM thrust system, and the two developed essentially independently. Three points are important: first, that both the KMG and the CRM thrust systems are decollement style thrusts; second, that the decollement horizon is primarily restricted to a narrow stratigraphical interval within a bedded sequence of essentially homogeneous dolostones of the Middle Cambrian Bonanza King Formation; the third, that the thrust faults formed at a very shallow crustal level (<5 km)

    Shiftwork duration and the awakening cortisol response among police officers

    No full text
    Police officers are required to work irregular hours, which induces stress, fatigue, and sleep disruption, and they have higher rates of chronic disease and mortality. Cortisol is a well-known stress hormone produced via activation of the hypothalamic-pituitary-adrenal axis. An abnormal secretion pattern has been associated with immune system dysregulation and may serve as an early indicator of disease risk. This study examined the effects of long-and short-term shiftwork on the cortisol awakening response among officers (n = 68) in the Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) pilot study (20012003). The time each officer spent on day (start time: 04:0011:59 h), afternoon (12:0019:59 h), or night (20:0003:59 h) shifts was summarized from 1994 to examination date to characterize long-term (mean: 14 ± 9 yrs) and short-term (3, 5, 7, or 14 days prior to participation) shiftwork exposures. The cortisol awakening response was characterized by summarizing the area under the curve (AUC) for samples collected on first awakening, and at 15-, 30-, and 45-min intervals after waking. Data were collected on a scheduled training or off day. The cortisol AUC with respect to ground (AUCG) summarized total cortisol output after waking, and the cortisol AUC with respect to increase (AUCI) characterized the waking cortisol response. Officers also completed the Center for Epidemiologic Studies Depression scale. Waking cortisol AUC values were lower among officers working short-term night or afternoon shifts than day shifts, with maximal differences occurring after 5 days of shiftwork. The duration of long-term shiftwork was not associated with the cortisol awakening response, although values were attenuated among officers with more career shift changes. © Informa Healthcare USA, Inc

    Shiftwork Duration and the Awakening Cortisol Response Among Police Officers

    No full text
    Police officers are required to work irregular hours, which induces stress, fatigue, and sleep disruption, and they have higher rates of chronic disease and mortality. Cortisol is a well-known “stress hormone” produced via activation of the hypothalamic-pituitary-adrenal axis. An abnormal secretion pattern has been associated with immune system dysregulation and may serve as an early indicator of disease risk. This study examined the effects of long- and short-term shiftwork on the cortisol awakening response among officers (n = 68) in the Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) pilot study (2001–2003). The time each officer spent on day (start time: 04:00–11:59 h), afternoon (12:00–19:59 h), or night (20:00–03:59 h) shifts was summarized from 1994 to examination date to characterize long-term (mean: 14 ± 9 yrs) and short-term (3, 5, 7, or 14 days prior to participation) shiftwork exposures. The cortisol awakening response was characterized by summarizing the area under the curve (AUC) for samples collected on first awakening, and at 15-, 30-, and 45-min intervals after waking. Data were collected on a scheduled training or off day. The cortisol AUC with respect to ground (AUC(G)) summarized total cortisol output after waking, and the cortisol AUC with respect to increase (AUC(I)) characterized the waking cortisol response. Officers also completed the Center for Epidemiologic Studies Depression scale. Waking cortisol AUC values were lower among officers working short-term night or afternoon shifts than day shifts, with maximal differences occurring after 5 days of shiftwork. The duration of long-term shiftwork was not associated with the cortisol awakening response, although values were attenuated among officers with more career shift changes

    Electrographic seizures induced by activation of ETA and ETB receptors following intrahippocampal infusion of endothelin-1 in immature rats occur by different mechanisms

    No full text
    We have demonstrated previously that activation of either the ETA or ETB receptor can induce acute electrographic seizures following the intrahippocampal infusion of endothelin-1 (ET-1) in immature (P12) rats. We also demonstrated that activation of the ETA receptor is associated with marked focal ischemia, while activation of the ETB receptor is not. Exploring the mechanisms underlying seizures induced by these two ET-1 receptor interactions can potentially provide insight into how focal ischemia in immature animals produces seizures and whether ischemiarelated seizures differ from seizures not associated with ischemia. To explore these seizure mechanisms we used microdialysis to determine biomarkers associated with seizures in P12 rats following the intrahippocampal infusion of two different agents: (1) ET-1, which activates both the ETA and ETB receptors and causes focal ischemia and (2) Ala-ET-1, which selectively activates only the ETB receptor and does not cause ischemia. Our results show that seizures associated with combined ETA and ETB receptor activation (and ischemia) have a different temporal distribution and microdialysis profile from seizures associated with ETB activation alone (and without ischemia). Seizures with combined activation peak within the first hour after infusion and the microdialysis profile is characterized by a significant increase in the ratio of glutamic acid to GABA. By contrast, seizures with activation of only the ETB receptor peak in the second hour after infusion and microdialysis shows a significant increase in the ratio of leukotriene B4 to prostaglandin E2. These findings suggest that ischemia-related seizures in immature animals involve an imbalance of excitation and inhibition, while non-ischemiarelated seizures involve an inflammatory process resulting from an excess of leukotrienes
    corecore