6 research outputs found

    Impact of Deep Learning Denoising Algorithm on Diffusion Tensor Imaging of the Growth Plate on Different Spatial Resolutions

    No full text
    To assess the impact of a deep learning (DL) denoising reconstruction algorithm applied to identical patient scans acquired with two different voxel dimensions, representing distinct spatial resolutions, this IRB-approved prospective study was conducted at a tertiary pediatric center in compliance with the Health Insurance Portability and Accountability Act. A General Electric Signa Premier unit (GE Medical Systems, Milwaukee, WI) was employed to acquire two DTI (diffusion tensor imaging) sequences of the left knee on each child at 3T: an in-plane 2.0 × 2.0 mm2 with section thickness of 3.0 mm and a 2 mm3 isovolumetric voxel; neither had an intersection gap. For image acquisition, a multi-band DTI with a fat-suppressed single-shot spin-echo echo-planar sequence (20 non-collinear directions; b-values of 0 and 600 s/mm2) was utilized. The MR vendor-provided a commercially available DL model which was applied with 75% noise reduction settings to the same subject DTI sequences at different spatial resolutions. We compared DTI tract metrics from both DL-reconstructed scans and non-denoised scans for the femur and tibia at each spatial resolution. Differences were evaluated using Wilcoxon-signed ranked test and Bland–Altman plots. When comparing DL versus non-denoised diffusion metrics in femur and tibia using the 2 mm × 2 mm × 3 mm voxel dimension, there were no significant differences between tract count (p = 0.1, p = 0.14) tract volume (p = 0.1, p = 0.29) or tibial tract length (p = 0.16); femur tract length exhibited a significant difference (p 3 voxel size (p p < 0.01). Leveraging denoising algorithms could address the drawbacks of lower signal-to-noise ratios (SNRs) associated with smaller voxel volumes and capitalize on their better spatial resolutions, allowing for more accurate quantification of diffusion metrics

    Multicenter Repeatability Study of a Novel Quantitative Diffusion Kurtosis Imaging Phantom

    No full text
    Quantitative kurtosis phantoms are sought by multicenter clinical trials to establish accuracy and precision of quantitative imaging biomarkers on the basis of diffusion kurtosis imaging (DKI) parameters. We designed and evaluated precision, reproducibility, and long-term stability of a novel isotropic (i) DKI phantom fabricated using four families of chemicals based on vesicular and lamellar mesophases of liquid crystal materials. The constructed iDKI phantoms included negative control monoexponential diffusion materials to independently characterize noise and model-induced bias in quantitative kurtosis parameters. Ten test–retest DKI studies were performed on four scanners at three imaging centers over a six-month period. The tested prototype phantoms exhibited physiologically relevant apparent diffusion, Dapp, and kurtosis, Kapp, parameters ranging between 0.4 and 1.1 (×10−3 mm2/s) and 0.8 and 1.7 (unitless), respectively. Measured kurtosis phantom Kapp exceeded maximum fit model bias (0.1) detected for negative control (zero kurtosis) materials. The material-specific parameter precision [95% CI for Dapp: 0.013–0.022(×10−3 mm2/s) and for Kapp: 0.009–0.076] derived from the test–retest analysis was sufficient to characterize thermal and temporal stability of the prototype DKI phantom through correlation analysis of inter-scan variability. The present study confirms a promising chemical design for stable quantitative DKI phantom based on vesicular mesophase of liquid crystal materials. Improvements to phantom preparation and temperature monitoring procedures have potential to enhance precision and reproducibility for future multicenter iDKI phantom studies

    Repeatability of Quantitative Diffusion-Weighted Imaging Metrics in Phantoms, Head-and-Neck and Thyroid Cancers: Preliminary Findings

    No full text
    The aim of this study was to establish the repeatability measures of quantitative Gaussian and non-Gaussian diffusion metrics using diffusion-weighted imaging (DWI) data from phantoms and patients with head-and-neck and papillary thyroid cancers. The Quantitative Imaging Biomarker Alliance (QIBA) DWI phantom and a novel isotropic diffusion kurtosis imaging phantom were scanned at 3 different sites, on 1.5T and 3T magnetic resonance imaging systems, using standardized multiple b-value DWI acquisition protocol. In the clinical component of this study, a total of 60 multiple b-value DWI data sets were analyzed for test–retest, obtained from 14 patients (9 head-and-neck squamous cell carcinoma and 5 papillary thyroid cancers). Repeatability of quantitative DWI measurements was assessed by within-subject coefficient of variation (wCV%) and Bland–Altman analysis. In isotropic diffusion kurtosis imaging phantom vial with 2% ceteryl alcohol and behentrimonium chloride solution, the mean apparent diffusion (Dapp × 10−3 mm2/s) and kurtosis (Kapp, unitless) coefficient values were 1.02 and 1.68 respectively, capturing in vivo tumor cellularity and tissue microstructure. For the same vial, Dapp and Kapp mean wCVs (%) were ≤1.41% and ≤0.43% for 1.5T and 3T across 3 sites. For pretreatment head-and-neck squamous cell carcinoma, apparent diffusion coefficient, D, D*, K, and f mean wCVs (%) were 2.38%, 3.55%, 3.88%, 8.0%, and 9.92%, respectively; wCVs exhibited a higher trend for papillary thyroid cancers. Knowledge of technical precision and bias of quantitative imaging metrics enables investigators to properly design and power clinical trials and better discern between measurement variability versus biological change

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore