287 research outputs found

    Budgeting practices in innovative companies

    Get PDF

    Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    Get PDF
    With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies

    Serum Hepcidin Concentrations Decline during Pregnancy and May Identify Iron Deficiency: Analysis of a Longitudinal Pregnancy Cohort in The Gambia.

    Get PDF
    Background: Antenatal anemia is a risk factor for adverse maternal and fetal outcomes and is prevalent in sub-Saharan Africa. Less than half of antenatal anemia is considered responsive to iron; identifying women in need of iron may help target interventions. Iron absorption is governed by the iron-regulatory hormone hepcidin.Objective: We sought to characterize changes in hepcidin and its associations with indexes of iron stores, erythropoiesis, and inflammation at weeks 14, 20, and 30 of gestation and to assess hepcidin's diagnostic potential as an index of iron deficiency.Methods: We measured hemoglobin and serum hepcidin, ferritin, soluble transferrin receptor (sTfR), and C-reactive protein (CRP) at 14, 20, and 30 wk of gestation in a cohort of 395 Gambian women recruited to a randomized controlled trial. Associations with hepcidin were measured by using linear regression, and hepcidin's diagnostic test accuracy [area under the receiver operating characteristic curve (AUCROC), sensitivity, specificity, cutoffs] for iron deficiency at each time point was analyzed.Results: The prevalence of anemia increased from 34.6% at 14 wk of gestation to 50.0% at 20 wk. Hepcidin concentrations declined between study enrollment and 20 wk, whereas ferritin declined between 20 and 30 wk of gestation. The variations in hepcidin explained by ferritin, sTfR, and CRP declined over pregnancy. The AUCROC values for hepcidin to detect iron deficiency (defined as ferritin <15 μg/L) were 0.86, 0.83, and 0.84 at 14, 20, and 30 wk, respectively. Hepcidin was superior to hemoglobin and sTfR as an indicator of iron deficiency.Conclusions: In Gambian pregnant women, hepcidin appears to be a useful diagnostic test for iron deficiency and may enable the identification of cases for whom iron would be beneficial. Hepcidin suppression in the second trimester suggests a window for optimal timing for antenatal iron interventions. Hemoglobin does not effectively identify iron deficiency in pregnancy. This trial was registered at www.isrctn.com as ISRCTN49285450

    Etiology of severe childhood pneumonia in the Gambia, West Africa, determined by conventional and molecular microbiological analyses of lung and pleural aspirate samples.

    Get PDF
    Molecular analyses of lung aspirates from Gambian children with severe pneumonia detected pathogens more frequently than did culture and showed a predominance of bacteria, principally Streptococcus pneumoniae, >75% being of serotypes covered by current pneumococcal conjugate vaccines. Multiple pathogens were detected frequently, notably Haemophilus influenzae (mostly nontypeable) together with S. pneumoniae

    Hormonal Correlates and Predictors of Nutritional Recovery in Malnourished African Children.

    Get PDF
    Background: Malnourished children show variable growth responses to nutritional rehabilitation. We aimed to investigate whether these differences could be explained by variations in growth and energy-regulating hormones. Methods: Quasi-experimental study: Children aged 6-24 months in rural Gambia were recruited to controls if weight-for-height z-score (WHZ) > -2 (n = 22), moderate acute malnutrition if WHZ  -3 (n = 18) or severe acute malnutrition if WHZ < -3 (n = 20). Plasma hormone and salivary CRP levels were determined by ELISA. Results: In univariable analyses, increases in weight-for-age z-score (WAZ) in malnourished children were positively correlated with insulin (F-ratio 7.8, p = 0.006), C-peptide (F-ratio 12.2, p < 0.001) and cortisol (F-ratio 5.0, p = 0.03). In multivariable analysis, only baseline C-peptide (F-ratio 7.6, p = 0.009) predicted the changes in WAZ over 28 days of interventions. Conclusion: In rural Gambian, malnourished children, although it cannot be used in isolation, baseline C-peptide was a predictor of future response to rehabilitation

    Conducting clinical research in a resource-constrained setting: lessons from a longitudinal cohort study in The Gambia.

    Get PDF
    Clinical research conducted to Good Clinical Practice (GCP) standards is increasingly being undertaken in resource-constrained low-income and middle-income countries (LMICs) settings. This presents unique challenges that differ from those faced in high-income country (HIC) contexts, due to a dearth of infrastructure and unique socio-cultural contexts. Field experiences by research teams working in these LMIC contexts are thus critical to advancing knowledge on successful research conduct in these settings. The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine has operated in The Gambia, a resource-constrained LMIC for over 70 years and has developed numerous research support platforms and systems. The unit was the lead clinical collaborator in a recently completed Expanded Program on Immunization Consortium (EPIC) study, involving a multicountry collaboration across five countries including the USA, Canada, Belgium, Papua New Guinea and The Gambia. The EPIC study recruited and completed follow-up of 720 newborn infants over 2 years. In this paper, we provide in-depth field experience covering challenges faced by the Gambian EPIC team in the conduct of this study. We also detail some reflections on these challenges. Our findings are relevant to the international research community as they highlight practical day-to-day challenges in conducting GCP standard clinical research in resource-constrained LMIC contexts. They also provide insights on how study processes can be adapted early during research planning to mitigate challenges

    Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children.

    Get PDF
    Iron deficiency anemia (IDA) is the most prevalent nutritional condition worldwide. We studied the contribution of hepcidin-mediated iron blockade to IDA in African children. We measured hepcidin and hemoglobin weekly, and hematological, inflammatory, and iron biomarkers at baseline, 7 weeks, and 12 weeks in 407 anemic (hemoglobin < 11 g/dl), otherwise healthy Gambian children (6 to 27 months). Each child maintained remarkably constant hepcidin levels (P < 0.0001 for between-child variance), with half consistently maintaining levels that indicate physiological blockade of iron absorption. Hepcidin was strongly predicted by nurse-ascribed adverse events with dominant signals from respiratory infections and fevers (all P < 0.0001). Diarrhea and fecal calprotectin were not associated with hepcidin. In multivariate analysis, C-reactive protein was the dominant predictor of hepcidin and contributed to iron blockade even at very low levels. We conclude that even low-grade inflammation, especially associated with respiratory infections, contributes to IDA in African children
    • …
    corecore