4 research outputs found

    Continental-scale animal tracking reveals functional movement classes across marine taxa

    Get PDF
    Acoustic telemetry is a principle tool for observing aquatic animals, but coverage over large spatial scales remains a challenge. To resolve this, Australia has implemented the Integrated Marine Observing System's Animal Tracking Facility which comprises a continental-scale hydrophone array and coordinated data repository. This national acoustic network connects localized projects, enabling simultaneous monitoring of multiple species over scales ranging from 100 s of meters to 1000 s of kilometers. There is a need to evaluate the utility of this national network in monitoring animal movement ecology, and to identify the spatial scales that the network effectively operates over. Cluster analyses assessed movements and residency of 2181 individuals from 92 species, and identified four functional movement classes apparent only through aggregating data across the entire national network. These functional movement classes described movement metrics of individuals rather than species, and highlighted the plasticity of movement patterns across and within populations and species. Network analyses assessed the utility and redundancy of each component of the national network, revealing multiple spatial scales of connectivity influenced by the geographic positioning of acoustic receivers. We demonstrate the significance of this nationally coordinated network of receivers to better reveal intra-specific differences in movement profiles and discuss implications for effective management

    Unique sequence of events triggers manta ray feeding frenzy in the Southern Great Barrier Reef, Australia

    Get PDF
    Manta rays are classified as Vulnerable to Extinction on the IUCN Red List for Threatened Species. In Australia, a key aggregation site for reef manta rays is Lady Elliot Island (LEI) on the Great Barrier Reef, ~7 km from the shelf edge. Here, we investigate the environmental processes that triggered the largest manta ray feeding aggregation yet observed in Australia, in early 2013. We use MODIS sea surface temperature (SST), chlorophyll-a concentration and photic depth data, together with in situ data, to show that anomalous river discharges led to high chlorophyll (anomalies: 10–15 mg·m−3) and turbid (photic depth anomalies: −15 m) river plumes extending out to LEI, and that these became entrained offshore around the periphery of an active cyclonic eddy. Eddy dynamics led to cold bottom intrusions along the shelf edge (6 °C temperature decrease), and at LEI (5 °C temperature decrease). Strongest SST gradients (>1 °C·km−1) were at the convergent frontal zone between the shelf and eddy-influenced waters, directly overlying LEI. Here, the front intensified on the spring ebb tide to attract and shape the aggregation pattern of foraging manta rays. Future research could focus on mapping the probability and persistence of these ecologically significant frontal zones via remote sensing to aid the management and conservation of marine species

    Continental-scale acoustic telemetry and network analysis reveal new insights into stock structure

    No full text
    Delineation of population structure (i.e. stocks) is crucial to successfully manage exploited species and to address conservation concerns for threatened species. Fish migration and associated movements are key mechanisms through which discrete populations mix and are thus important determinants of population structure. Detailed information on fish migration and movements is becoming more accessible through advances in telemetry and analysis methods however such information is not yet used systematically in stock structure assessment. Here, we described how detections of acoustically tagged fish across a continental-scale array of underwater acoustic receivers were used to assess stock structure and connectivity in seven teleost and seven shark species and compared to findings from genetic and conventional tagging. Network analysis revealed previously unknown population connections in some species, and in others bolstered support for existing stock discrimination by identifying nodes and routes important for connectivity. Species with less variability in their movements required smaller sample sizes (45–50 individuals) to reveal useful stock structure information. Our study shows the power of continental-scale acoustic telemetry networks to detect movements among fishery jurisdictions. We highlight methodological issues that need to be considered in the design of acoustic telemetry studies for investigating stock structure and the interpretation of the resulting data. The advent of broad-scale acoustic telemetry networks across the globe provides new avenues to understand how movement informs population structure and can lead to improved management

    A standardisation framework for bio-logging data to advance ecological research and conservation

    No full text
    Bio-logging data obtained by tagging animals is key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms. This slows down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability, and effective translation of bio-logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable, and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (i) decoded raw data, (ii) curated data, (iii) interpolated data, and (iv) gridded data. Our framework allows for integration of simple tabular arrays (e.g., csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process), and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, providing data examples, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g., the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology
    corecore