5,734 research outputs found

    Social Simulation of Stock Markets: Taking It to the Next Level

    Get PDF
    This paper studies the use of social simulation in linking micro level investor behaviour and macro level stock market dynamics. Empirical data from a survey on individual investors\' decision-making and social interaction was used to formalize the trading and interaction rules of the agents of the artificial stock market SimStockExchange. Multiple simulation runs were performed with this artificial stock market, which generated macro level results, like stock market prices and returns over time. These outcomes were subsequently compared to empirical macro level data from real stock markets. Partial qualitative as well as quantitative agreement between the simulated asset returns distributions and the asset returns distributions of the real stock markets was found.Agent-Based Computational Finance, Artificial Stock Markets, Behavioral Finance, Micro-Macro Links, Multi-Agent Simulation, Stock Market Characteristics

    Inclusive Quasi-Elastic Charged-Current Neutrino-Nucleus Reactions

    Get PDF
    The Quasi-Elastic (QE) contribution of the nuclear inclusive electron scattering model developed in Nucl. Phys. A627 (1997) 543 is extended to the study of electroweak Charged Current (CC) induced nuclear reactions, at intermediate energies of interest for future neutrino oscillation experiments. The model accounts for, among other nuclear effects, long range nuclear (RPA) correlations, Final State Interaction (FSI) and Coulomb corrections. Predictions for the inclusive muon capture in 12^{12}C and the reaction 12^{12}C (νμ,μ)X(\nu_\mu,\mu^-)X near threshold are also given. RPA correlations are shown to play a crucial role and their inclusion leads to one of the best existing simultaneous description of both processes, with accuracies of the order of 10-15% per cent for the muon capture rate and even better for the LSND measurement.Comment: 31 pages and 14 figures, accepted for publication as a regular article in Physical Review

    The yellow hypergiants HR 8752 and rho Cassiopeiae near the evolutionary border of instability

    Get PDF
    High-resolution near-ultraviolet spectra of the yellow hypergiants HR 8752 and rho Cassiopeiae indicate high effective temperatures placing both stars near the T_eff border of the ``yellow evolutionary void''. At present, the temperature of HR 8752 is higher than ever. For this star we found Teff=7900+-200 K, whereas rho Cassiopeiae has Teff=7300+-200 K. Both, HR 8752 and rho Cassiopeiae have developed strong stellar winds with Vinf ~ 120 km/s and Vinf ~ 100 km/s, respectively. For HR 8752 we estimate an upper limit for the spherically symmetric mass-loss of 6.7X10^{-6}M_solar/yr. Over the past decades two yellow hypergiants appear to have approached an evolutionary phase, which has never been observed before. We present the first spectroscopic evidence of the blueward motion of a cool super/hypergiant on the HR diagram.Comment: 13 pages including 3 figures. Accepted for publication in ApJ Letter

    On the universal X-ray luminosity function of binary X-ray sources in galaxies

    Get PDF
    The empirically determined universal power-law shape of X-ray luminosity function of high mass X-ray binaries in galaxies is explained by fundamental mass-luminosity and mass-radius relations for massive stars.Comment: 4 pages, plain LaTeX, no figures. Submitted to Astronomy Letter

    X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri

    Get PDF
    Using the XMM-Newton X-ray observatory to monitor the nearest star to the Sun, Proxima Centauri, we recorded the weakest X-ray flares on a magnetically active star ever observed. Correlated X-ray and optical variability provide strong support for coronal energy and mass supply by a nearly continuous sequence of rapid explosive energy releases. Variable emission line fluxes were observed in the He-like triplets of OVII and NeIX during a giant flare. They give direct X-ray evidence for density variations, implying densities between 2x10^{10} - 4x10^{11} cm^{-3} and providing estimates of the mass and the volume of the line-emitting plasma. We discuss the data in the context of the chromospheric evaporation scenario.Comment: 10 pages, 2 figures, accepted by The Astrophysical Journal, Letters; improved calculations of radiative loss of cool plasma (toward end of paper

    A principled approach to the measurement of situation awareness in commercial aviation

    Get PDF
    The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems

    Collisionless Damping of Fast MHD Waves in Magneto-rotational Winds

    Full text link
    We propose collisionless damping of fast MHD waves as an important mechanism for the heating and acceleration of winds from rotating stars. Stellar rotation causes magnetic field lines anchored at the surface to form a spiral pattern and magneto-rotational winds can be driven. If the structure is a magnetically dominated, fast MHD waves generated at the surface can propagate almost radially outward and cross the field lines. The propagating waves undergo collisionless damping owing to interactions with particles surfing on magnetic mirrors that are formed by the waves themselves. The damping is especially effective where the angle between the wave propagation and the field lines becomes moderately large (20\sim 20 to 8080^{\circ}). The angle tends naturally to increase into this range because the field in magneto-rotational winds develops an increasingly large azimuthal component. The dissipation of the wave energy produces heating and acceleration of the outflow. We show using specified wind structures that this damping process can be important in both solar-type stars and massive stars that have moderately large rotation rates. This mechanism can play a role in coronae of young solar-type stars which are rapidly rotating and show X-ray luminosities much larger than the sun. The mechanism could also be important for producing the extended X-ray emitting regions inferred to exist in massive stars of spectral type middle B and later.Comment: 12 pages, including 7 figures, accepted for publication in Ap

    The composition and nature of the dust shell surrounding the binary AFGL 4106

    Get PDF
    We present infrared spectroscopy and imaging of AFGL~4106. The 2.4-5 micron ISO-SWS spectrum reveals the presence of a cool, luminous star (T_eff ~ 3750 K) in addition to an almost equally luminous F star (T_eff ~ 7250 K). The 5-195 micron SWS and LWS spectra are dominated by strong emission from circumstellar dust. We find that the dust consists of amorphous silicates, with a minor but significant contribution from crystalline silicates. The amorphous silicates consist of Fe-rich olivines. The presence of amorphous pyroxenes cannot be excluded but if present they contain much less Fe than the amorphous olivines. Comparison with laboratory data shows that the pure Mg-end members of the crystalline olivine and pyroxene solid solution series are present. In addition, we find strong evidence for simple oxides (FeO and Al2O3) as well as crystalline H2O ice. Several narrow emission features remain unidentified. Modelling of the dust emission using a dust radiation transfer code shows that large grains (~1 micron) must be present and that the abundance of the crystalline silicates is between 7 and 15% of the total dust mass, depending on the assumed enstatite to forsterite ratio, which is estimated to be between 1 and 3. The amorphous and crystalline dust components in the shell do not have the same temperature, implying that the different dust species are not thermally coupled. We find a dust mass of ~3.9 x 10^-2 M_sol expelled over a period of 4 x 10^3 years for a distance of 3.3 kpc. The F-star in the AFGL~4106 binary is likely a post-red-supergiant in transition to a blue supergiant or WR phase.Comment: 22 pages (including 12 figures), accepted by Astronomy and Astrophysic

    The Circular Dispersion Spectrum

    Get PDF
    AbstractLet ϑ be a real irrational number and N a positive integer. The one-dimensional torus T is divided by the N points nϑ mod 1, n = 1, 2, ..., N, into N arcs. Denote the length of the longest of these arcs by dN. Define the circular dispersion constant of ϑ, notation C(ϑ), by C(ϑ) ≔ lim supN → ∞NdN. The set of numbers C(ϑ) is called the circular dispersion spectrum. This paper determines the smallest accumulation point of this spectrum and all points below this accumulation point
    corecore