11 research outputs found

    Comment on "Amplified emission and lasing in photonic time crystals"

    Full text link
    Lyubarov et al. (Research Articles, 22 July 2022, p. 425) claim that the spontaneous emission rate of an atom vanishes at the momentum gap edges of photonic Floquet media. We show that their theoretical prediction is based on assumptions that result in misleading interpretations on the spontaneous emission rate in photonic Floquet media

    Interpretable inverse-designed cavity for on-chip nonlinear and quantum optics

    Get PDF
    Inverse design is a powerful tool in wave-physics and in particular in photonics for compact, high-performance devices. To date, applications have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the "black box" nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at 1.1MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications

    Revealing non-Hermitian band structure of photonic Floquet media

    No full text
    Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time -periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.Y

    Revealing non-Hermitian band structure of photonic Floquet media

    No full text
    Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time-periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.11Nsciescopu

    Spontaneous emission decay and excitation in photonic temporal crystals

    No full text
    Over the last few decades, the prominent strategies for controlling spontaneous emission has been the use of resonant or space-periodic photonic structures. This approach, initially articulated by Purcell and later expanded upon by Yablonovitch in the context of photonic crystals, leverages the spatial surroundings to modify the spontaneous emission decay rate of atoms or quantum emitters. However, the rise of time-varying photonics has compelled a reevaluation of the spontaneous emission process within dynamically changing environments, especially concerning photonic temporal crystals where optical properties undergo time-periodic modulation. Here, we apply classical light-matter interaction theory along with Floquet analysis to reveal a substantial enhancement in the spontaneous emission decay rate at the momentum gap frequency in photonic temporal crystals. This enhancement is attributed to time-periodicity-induced loss and gain mechanisms, as well as the non-orthogonality of Floquet eigenstates that are inherent to photonic temporal crystals. Intriguingly, our findings also suggest that photonic temporal crystals enable the spontaneous excitation of an atom from its ground state to an excited state, accompanied by the concurrent emission of a photon
    corecore