10 research outputs found

    Recasting Continual Learning as Sequence Modeling

    Full text link
    In this work, we aim to establish a strong connection between two significant bodies of machine learning research: continual learning and sequence modeling. That is, we propose to formulate continual learning as a sequence modeling problem, allowing advanced sequence models to be utilized for continual learning. Under this formulation, the continual learning process becomes the forward pass of a sequence model. By adopting the meta-continual learning (MCL) framework, we can train the sequence model at the meta-level, on multiple continual learning episodes. As a specific example of our new formulation, we demonstrate the application of Transformers and their efficient variants as MCL methods. Our experiments on seven benchmarks, covering both classification and regression, show that sequence models can be an attractive solution for general MCL.Comment: NeurIPS 202

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    SAFP-YOLO: Enhanced Object Detection Speed Using Spatial Attention-Based Filter Pruning

    No full text
    Because object detection accuracy has significantly improved advancements in deep learning techniques, many real-time applications have applied one-stage detectors, such as You Only Look Once (YOLO), owing to their fast execution speed and accuracy. However, for a practical deployment, the deployment cost should be considered. In this paper, a method for pruning the unimportant filters of YOLO is proposed to satisfy the real-time requirements of a low-cost embedded board. Attention mechanisms have been widely used to improve the accuracy of deep learning models. However, the proposed method uses spatial attention to improve the execution speed of YOLO by evaluating the importance of each YOLO filter. The feature maps before and after spatial attention are compared, and then the unimportant filters of YOLO can be pruned based on this comparison. To the best of our knowledge, this is the first report considering both accuracy and speed with Spatial Attention-based Filter Pruning (SAFP) for lightweight object detectors. To demonstrate the effectiveness of the proposed method, it was applied to the YOLOv4 and YOLOv7 baseline models. With the pig (baseline YOLOv4 84.4%@3.9FPS vs. proposed SAFP-YOLO 78.6%@20.9FPS) and vehicle (baseline YOLOv7 81.8%@3.8FPS vs. proposed SAFP-YOLO 75.7%@20.0FPS) datasets, the proposed method significantly improved the execution speed of YOLOv4 and YOLOv7 (i.e., by a factor of five) on a low-cost embedded board, TX-2, with acceptable accuracy

    Snapshot Mueller spectropolarimeter imager

    No full text
    Abstract We introduce an imaging system that can simultaneously record complete Mueller polarization responses for a set of wavelength channels in a single image capture. The division-of-focal-plane concept combines a multiplexed illumination scheme based on Fourier optics together with an integrated telescopic light-field imaging system. Polarization-resolved imaging is achieved using broadband nanostructured plasmonic polarizers as functional pinhole apertures. The recording of polarization and wavelength information on the image sensor is highly interpretable. We also develop a calibration approach based on a customized neural network architecture that can produce calibrated measurements in real-time. As a proof-of-concept demonstration, we use our calibrated system to accurately reconstruct a thin film thickness map from a four-inch wafer. We anticipate that our concept will have utility in metrology, machine vision, computational imaging, and optical computing platforms

    Prospective Study of 4 Gy Radiotherapy for Orbital Mucosa-Associated Lymphoid Tissue Lymphoma (FORMAL)

    No full text
    External beam radiotherapy is effective for stage I orbital mucosa-associated lymphoid tissue lymphoma (MALToma). Hence, very-low-dose radiotherapy is increasingly being investigated. We conducted a single-center prospective phase II trial to evaluate the effectiveness of very-low-dose radiotherapy of 4 Gy (2 Gy &times; 2 fractions) in pathologically confirmed stage I orbital MALToma. In this first prospective trial, patients with complete response were observed after 3&ndash;6 months of follow-up. For patients without complete remission, a radiation dose of 24 Gy/12 fractions was additionally delivered. The primary endpoint was complete response rate; secondary endpoints were overall survival, local control, and progression-free survival. Seventeen patients were screened and three patients refused enrollment during October 2018&ndash;October 2021. Thus, 14 patients (17 eyes) were analyzed (median follow-up, 28.2 months). The overall response rate was 100% (complete remission: 11 lesions; partial remission: six lesions). In all lesions with residual disease, additional radiation therapy (dose: 24 Gy) was performed. One local failure was observed. Therefore, 4 Gy ultralow-dose radiation therapy for orbital MALToma was safely performed with a planned second-line treatment in patients without complete remission. This is the first prospective study to report the effectiveness of ultralow-dose radiotherapy of 4 Gy for stage I orbital MALToma treatment

    Synthesis and anti-prion aggregation activity of acylthiosemicarbazide analogues

    No full text
    AbstractPrions are infectious protein particles known to cause prion diseases. The biochemical entity of the pathogen is the misfolded prion protein (PrPSc) that forms insoluble amyloids to impair brain function. PrPSc interacts with the non-pathogenic, cellular prion protein (PrPC) and facilitates conversion into a nascent misfolded isoform. Several small molecules have been reported to inhibit the aggregation of PrPSc but no pharmacological intervention was well established thus far. We, here, report that acylthiosemicarbazides inhibit the prion aggregation. Compounds 7x and 7y showed almost perfect inhibition (EC50 = 5 µM) in prion aggregation formation assay. The activity was further confirmed by atomic force microscopy, semi-denaturing detergent agarose gel electrophoresis and real-time quaking induced conversion assay (EC50 = 0.9 and 2.8 µM, respectively). These compounds also disaggregated pre-existing aggregates in vitro and one of them decreased the level of PrPSc in cultured cells with permanent prion infection, suggesting their potential as a treatment platform. In conclusion, hydroxy-2-naphthoylthiosemicarbazides can be an excellent scaffold for the discovery of anti-prion therapeutics
    corecore