11,018 research outputs found
Improved solution of the lidar equation utilizing particle counter measurements
The extraction of particle backscattering from incoherent lidar measurements poses some problems. In the case of measurements of the stratospheric aerosol layer the solution of the lidar equation is based on two assumptions which are necessary to normalize the measured signal and to correct it with the two-way transmission of the laser pulse. Normalization and transmission are tackled by adding the information contained in aerosol particle counter measurements of the University of Wyoming to the ruby lidar measurements at Garmisch-Partenkirchen. Calculated backscattering from height levels above 25 km for the El Chichon period will be compared with lidar measurements and necessary corrections. The calculated backscatter-to-extinction ratios are compared to those, which were derived from a comparison of published extinction values to measured lidar backscattering at Garmisch. These ratios were used to calculate the Garmisch lidar returns. For the period 4 to 12 months after the El Chichon eruption a backscater-to-extinction ratio of 0.026 1/sr was applied with smaller values before and after that time
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
Examination of the Circle Spline Routine
The Circle Spline routine is currently being used for generating both two and three dimensional spline curves. It was developed for use in ESCHER, a mesh generating routine written to provide a computationally simple and efficient method for building meshes along curved surfaces. Circle Spline is a parametric linear blending spline. Because many computerized machining operations involve circular shapes, the Circle Spline is well suited for both the design and manufacturing processes and shows promise as an alternative to the spline methods currently supported by the Initial Graphics Specification (IGES)
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
A new algorithm for recognizing the unknot
The topological underpinnings are presented for a new algorithm which answers
the question: `Is a given knot the unknot?' The algorithm uses the braid
foliation technology of Bennequin and of Birman and Menasco. The approach is to
consider the knot as a closed braid, and to use the fact that a knot is
unknotted if and only if it is the boundary of a disc with a combinatorial
foliation. The main problems which are solved in this paper are: how to
systematically enumerate combinatorial braid foliations of a disc; how to
verify whether a combinatorial foliation can be realized by an embedded disc;
how to find a word in the the braid group whose conjugacy class represents the
boundary of the embedded disc; how to check whether the given knot is isotopic
to one of the enumerated examples; and finally, how to know when we can stop
checking and be sure that our example is not the unknot.Comment: 46 pages. Published copy, also available at
http://www.maths.warwick.ac.uk/gt/GTVol2/paper9.abs.htm
Optoelectronic Reservoir Computing
Reservoir computing is a recently introduced, highly efficient bio-inspired
approach for processing time dependent data. The basic scheme of reservoir
computing consists of a non linear recurrent dynamical system coupled to a
single input layer and a single output layer. Within these constraints many
implementations are possible. Here we report an opto-electronic implementation
of reservoir computing based on a recently proposed architecture consisting of
a single non linear node and a delay line. Our implementation is sufficiently
fast for real time information processing. We illustrate its performance on
tasks of practical importance such as nonlinear channel equalization and speech
recognition, and obtain results comparable to state of the art digital
implementations.Comment: Contains main paper and two Supplementary Material
Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology
The shear-jamming of dense suspensions can be strongly affected by
molecular-scale interactions between particles, e.g. by chemically controlling
their propensity for hydrogen bonding. However, hydrogen bonding not only
enhances interparticle friction, a critical parameter for shear jamming, but
also introduces (reversible) adhesion, whose interplay with friction in
shear-jamming systems has so far remained unclear. Here, we present atomic
force microscopy studies to assess interparticle adhesion, its relationship to
friction, and how these attributes are influenced by urea, a molecule that
interferes with hydrogen bonding. We characterize the kinetics of this process
with nuclear magnetic resonance, relating it to the time dependence of the
macroscopic flow behavior with rheological measurements. We find that
time-dependent urea sorption reduces friction and adhesion, causing a shift in
the shear-jamming onset. These results extend our mechanistic understanding of
chemical effects on the nature of shear jamming, promising new avenues for
fundamental studies and applications alike
Learning Markov Decision Processes for Model Checking
Constructing an accurate system model for formal model verification can be
both resource demanding and time-consuming. To alleviate this shortcoming,
algorithms have been proposed for automatically learning system models based on
observed system behaviors. In this paper we extend the algorithm on learning
probabilistic automata to reactive systems, where the observed system behavior
is in the form of alternating sequences of inputs and outputs. We propose an
algorithm for automatically learning a deterministic labeled Markov decision
process model from the observed behavior of a reactive system. The proposed
learning algorithm is adapted from algorithms for learning deterministic
probabilistic finite automata, and extended to include both probabilistic and
nondeterministic transitions. The algorithm is empirically analyzed and
evaluated by learning system models of slot machines. The evaluation is
performed by analyzing the probabilistic linear temporal logic properties of
the system as well as by analyzing the schedulers, in particular the optimal
schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345
Where to go in the near future: diverging perspectives on online public service delivery
Although the electronic government is under heavy development, a clear vision doesn’t seem to exist. In this study 20 interviews among leaders in the field of e-government in the Netherlands resulted in different perspectives on the future of electronic public service delivery. The interviews revealed different objectives and interpretations of the presuppositions regarding citizens’ desires. Opinions about channel approaches and ‘trigger services’ appeared to vary. Furthermore, the respondents didn’t agree on the number of contact moments between citizen and government, had different opinions about digital skills, pled for various designs of the electronic government and placed the responsibility for electronic service delivery in different hands. Conclusion is that there is a lack of concepts on how to do things. Everybody talks about eGovernment, but all have different interpretations. \u
Hysteretic clustering in granular gas
Granular material is vibro-fluidized in N=2 and N=3 connected compartments,
respectively. For sufficiently strong shaking the granular gas is
equi-partitioned, but if the shaking intensity is lowered, the gas clusters in
one compartment. The phase transition towards the clustered state is of 2nd
order for N=2 and of 1st order for N=3. In particular, the latter is
hysteretic. The experimental findings are accounted for within a dynamical
model that exactly has the above properties
- …