43 research outputs found

    General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of <it>L. hongkongensis </it>and correlated them with its phenotypic characteristics.</p> <p>Results</p> <p>The <it>L. hongkongensis </it>genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in <it>Neisseria gonorrhoeae</it>, <it>Neisseria meningitidis </it>and <it>Chromobacterium violaceum</it>. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.</p

    PacBio But Not Illumina Technology Can Achieve Fast, Accurate and Complete Closure of the High GC, Complex Burkholderia pseudomallei Two-Chromosome Genome

    Get PDF
    Although PacBio third-generation sequencers have improved the read lengths of genome sequencing which facilitates the assembly of complete genomes, no study has reported success in using PacBio data alone to completely sequence a two-chromosome bacterial genome from a single library in a single run. Previous studies using earlier versions of sequencing chemistries have at most been able to finish bacterial genomes containing only one chromosome with de novo assembly. In this study, we compared the robustness of PacBio RS II, using one SMRT cell and the latest P6-C4 chemistry, with Illumina HiSeq 1500 in sequencing the genome of Burkholderia pseudomallei, a bacterium which contains two large circular chromosomes, very high G+C content of 68–69%, highly repetitive regions and substantial genomic diversity, and represents one of the largest and most complex bacterial genomes sequenced, using a reference genome generated by hybrid assembly using PacBio and Illumina datasets with subsequent manual validation. Results showed that PacBio data with de novo assembly, but not Illumina, was able to completely sequence the B. pseudomallei genome without any gaps or mis-assemblies. The two large contigs of the PacBio assembly aligned unambiguously to the reference genome, sharing &gt;99.9% nucleotide identities. Conversely, Illumina data assembled using three different assemblers resulted in fragmented assemblies (201–366 contigs), sharing only 92.2–100% and 92.0–100% nucleotide identities to chromosomes I and II reference sequences, respectively, with no indication that the B. pseudomallei genome consisted of two chromosomes with four copies of ribosomal operons. Among all assemblies, the PacBio assembly recovered the highest number of core and virulence proteins, and housekeeping genes based on whole-genome multilocus sequence typing (wgMLST). Most notably, assembly solely based on PacBio outperformed even hybrid assembly using both PacBio and Illumina datasets. Hybrid approach generated only 74 contigs, while the PacBio data alone with de novo assembly achieved complete closure of the two-chromosome B. pseudomallei genome without additional costly bench work and further sequencing. PacBio RS II using P6-C4 chemistry is highly robust and cost-effective and should be the platform of choice in sequencing bacterial genomes, particularly for those that are well-known to be difficult-to-sequence

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    Discovery and Genomic Characterization of a Novel Ovine Partetravirus and a New Genotype of Bovine Partetravirus

    Get PDF
    Partetravirus is a recently described group of animal parvoviruses which include the human partetravirus, bovine partetravirus and porcine partetravirus (previously known as human parvovirus 4, bovine hokovirus and porcine hokovirus respectively). In this report, we describe the discovery and genomic characterization of partetraviruses in bovine and ovine samples from China. These partetraviruses were detected by PCR in 1.8% of bovine liver samples, 66.7% of ovine liver samples and 71.4% of ovine spleen samples. One of the bovine partetraviruses detected in the present samples is phylogenetically distinct from previously reported bovine partetraviruses and likely represents a novel genotype. The ovine partetravirus is a novel partetravirus and phylogenetically most related to the bovine partetraviruses. The genome organization is conserved amongst these viruses, including the presence of a putative transmembrane protein encoded by an overlapping reading frame in ORF2. Results from the present study provide further support to the classification of partetraviruses as a separate genus in Parvovirinae

    High Prevalence of Genogroup I and Genogroup II Picobirnaviruses in Dromedary Camels

    No full text
    Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA viruses found in humans, mammals, and birds. Increasing molecular epidemiology studies suggest a high sequence diversity of PBVs in numerous hosts and the environment. In this study, using 229 fecal samples from dromedary camels in Dubai, 52.8% were positive for PBVs, of which 77.7% and 41.3% were positive for genogroup I and II, respectively, and 19.0% were positive for both genotypes. Phylogenetic analysis showed high diversity among the sequences of genogroup I and II dromedary PBVs. Marked nucleotide polymorphisms were observed in 75.5% and 46.0% of genogroup I and II RNA-dependent RNA polymerase (RdRp) sequences, respectively, suggesting the co-existence of multiple strains in the same specimen. Both high genetic diversity and prevalence of genogroup I and II PBV in dromedaries were observed. In fact, the prevalence of genogroup II PBV in dromedaries is the highest among all animals to date. The complete/near-complete core genomes of five genogroup I and one genogroup II dromedary PBVs and partial segment 1 and 2 of both genotypes were also sequenced. The dromedary PBV genome organizations were similar to those of other animals. Genetic reassortment and mutation are both important in the ecology and evolution of PBVs

    Fatal bacteremic melioidosis in patients with prolonged neutropenia

    No full text
    © 2015 Elsevier Inc.Melioidosis, an infection with an expanding geographic range, is extremely rare in neutropenic patients. We report bacteremic melioidosis (ST-70 and ST-660) in 2 patients with prolonged neutropenia, who succumbed despite appropriate antibiotics. Clinicians should be aware of this emerging infection in neutropenic patients residing in or returning from endemic areas.Link_to_subscribed_fulltex

    Characterization of a novel cryptic plasmid, pHLHK26, in Laribacter hongkongensis

    No full text
    We report the complete nucleotide sequence and characterization of a cryptic plasmid, pHLHK26, recovered from a strain of Laribacter hongkongensis isolated from a patient with community acquired gastroenteritis. pHLHK26 consists of 8700 bp, with G + C content 51.3%. The copy number (mean±SD) is 0.57±0.07 and it is stable after four passages (about 240 generations) in the absence of selection. There is a predicted origin of replication that consists of a DnaA box and five 22-bp direct repeats. pHLHK26 has four ORFs with two genes encoded in the sense direction and the other two in antisense direction. These four ORFs encode a putative plasmid partitioning protein of the ParA family, a putative protein that contains putative ADP-ribose 1&quot;-phosphatase activity belonging to the Appr-1-p processing enzyme family, a putative recombinase (TniR) of the resolvase/invertase family, and a putative replication protein, respectively. We speculate that pHLHK26 is a theta, possibly Class A, replicative plasmid, as it contains an origin of replication with AT-rich region, a number of iterons and a DnaA box and a gene that encodes a replicative protein most homologous to those of other theta replicative plasmids and it shares eight of the nine positions of the consensus sequence TTAT(C/A)CA(C/A)A (TTTTCCACA in pHLHK26) in the DnaA boxes observed in other classical examples of Class A plasmids of this group

    Complication of Corticosteroid Treatment by Acute Plasmodium malariae Infection Confirmed by Small-Subunit rRNA Sequencing▿

    No full text
    We report a case of acute Plasmodium malariae infection complicating corticosteroid treatment for membranoproliferative glomerulonephritis in a patient from an area where P. malariae infection is not endemic. A peripheral blood smear showed typical band-form trophozoites compatible with P. malariae or Plasmodium knowlesi. SSU rRNA sequencing confirmed the identity to be P. malariae

    Characterization of Haemophilus segnis, an Important Cause of Bacteremia, by 16S rRNA Gene Sequencing

    No full text
    We describe the application of 16S rRNA gene sequencing in defining eight cases of bacteremia due to Haemophilus species other than Haemophilus influenzae (non-H. influenzae bacteremia) during a 7-year period. The first case of acute pyelonephritis due to Haemophilus segnis is also reported. In contrast to the extremely rare incidence of H. segnis infections reported previously, our results suggested that H. segnis is an important cause of non-H. influenzae bacteremia

    Streptococcus sinensis sp. nov., a Novel Species Isolated from a Patient with Infective Endocarditis

    No full text
    A bacterium was isolated from the blood culture of a patient with infective endocarditis. The cells were facultative anaerobic, nonsporulating, gram-positive cocci arranged in chains. The bacterium grows on sheep blood agar as alpha-hemolytic, gray colonies of 0.5 to 1 mm in diameter after 24 h of incubation at 37°C in ambient air. Growth also occurs in 10 or 40% bile and on bile esculin agar but not in 6% NaCl. No enhancement of growth is observed in 5% CO(2). It is nongroupable with Lancefield groups A, B, C, D, F, or G antisera and is resistant to optochin and bacitracin. The organism is aflagellated and is nonmotile at both 25 and 37°C. It is Voges-Proskauer test positive. It produces leucine arylamidase and β-glucosidase but not catalase, urease, lysine decarboxylase, or ornithine decarboxylase. It hydrolyzes esculin and arginine. It utilizes glucose, lactose, salicin, sucrose, pullulan, trehalose, cellobiose, hemicellulase, mannose, maltose, and starch. 16S rRNA gene sequencing showed that there were 3.6, 3.7, 4.3, 4.7, and 5.9% differences between the 16S rRNA gene sequence of the bacterium and those of Streptococcus gordonii, Streptococcus intermedius, Streptococcus constellatus, Streptococcus sanguis, and Streptococcus anginosus, respectively. The G+C content of it (mean ± standard deviation) was 53.0% ± 2.9%. Based on phylogenetic affiliation, it belongs to the mitis or anginosus group of Streptococcus. For these reasons a new species, Streptococcus sinensis sp. nov., is proposed, for which HKU4 is the type strain. Further studies should be performed to ascertain the potential of this bacterium to become an emerging cause of infective endocarditis
    corecore