10,988 research outputs found
Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole
An effective black-hole-like horizon occurs, for electromagnetic waves in
matter, at a surface of singular electric and magnetic permeabilities. In a
physical dispersive medium this horizon disappears for wave numbers with
. Nevertheless, it is shown that Hawking radiation is still emitted if
free field modes with are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro
Trans-Planckian Tail in a Theory with a Cutoff
Trans-planckian frequencies can be mimicked outside a black-hole horizon as a
tail of an exponentially large amplitude wave that is mostly hidden behind the
horizon. The present proposal requires implementing a final state condition.
This condition involves only frequencies below the cutoff scale. It may be
interpreted as a condition on the singularity. Despite the introduction of the
cutoff, the Hawking radiation is restored for static observers. Freely falling
observers see empty space outside the horizon, but are "heated" as they cross
the horizon.Comment: 17 pages, RevTe
A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab
We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein
condensate both experimentally and theoretically. The expansion redshifts
long-wavelength excitations, as in an expanding universe. After expansion,
energy in the radial mode leads to the production of bulk topological
excitations -- solitons and vortices -- driving the production of a large
number of azimuthal phonons and, at late times, causing stochastic persistent
currents. These complex nonlinear dynamics, fueled by the energy stored
coherently in one mode, are reminiscent of a type of "preheating" that may have
taken place at the end of inflation.Comment: 12 pages, 7 figure
A Multi-Band Far-Infrared Survey with a Balloon-Borne Telescope
Nine additional radiation sources, above a 3-sigma confidence level of 1300 Jy, were identified at 100 microns by far infrared photometry of the galactic plane using a 0.4 meter aperture, liquid helium cooled, multichannel far infrared balloon-borne telescope. The instrument is described, including its electronics, pointing and suspension systems, and ground support equipment. Testing procedures and flight staging are discussed along with the reduction and analysis of the data acquired. The history of infrared astronomy is reviewed. General infrared techniques and the concerns of balloon astronomers are explored
On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox
We develop a Hamiltonian formalism which can be used to discuss the physics
of a massless scalar field in a gravitational background of a Schwarzschild
black hole. Using this formalism we show that the time evolution of the system
is unitary and yet all known results such as the existence of Hawking radiation
can be readily understood. We then point out that the Hamiltonian formalism
leads to interesting observations about black hole entropy and the information
paradox.Comment: 45 pages, revte
A Note on Hartle-Hawking Vacua
The purpose of this note is to establish the basic properties--- regularity
at the horizon, time independence, and thermality--- of the generalized
Hartle-Hawking vacua defined in static spacetimes with bifurcate Killing
horizon admitting a regular Euclidean section. These states, for free or
interacting fields, are defined by a path integral on half the Euclidean
section. The emphasis is on generality and the arguments are simple but formal.Comment: 5 pages, LaTe
Hawking radiation without black hole entropy
In this Letter I point out that Hawking radiation is a purely kinematic
effect that is generic to Lorentzian geometries. Hawking radiation arises for
any test field on any Lorentzian geometry containing an event horizon
regardless of whether or not the Lorentzian geometry satisfies the dynamical
Einstein equations of general relativity. On the other hand, the classical laws
of black hole mechanics are intrinsically linked to the Einstein equations of
general relativity (or their perturbative extension into either semiclassical
quantum gravity or string-inspired scenarios). In particular, the laws of black
hole thermodynamics, and the identification of the entropy of a black hole with
its area, are inextricably linked with the dynamical equations satisfied by the
Lorentzian geometry: entropy is proportional to area (plus corrections) if and
only if the dynamical equations are the Einstein equations (plus corrections).
It is quite possible to have Hawking radiation occur in physical situations in
which the laws of black hole mechanics do not apply, and in situations in which
the notion of black hole entropy does not even make any sense. This observation
has important implications for any derivation of black hole entropy that seeks
to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach
We present a method for computing the spectrum of black hole radiation of a
scalar field satisfying a wave equation with high frequency dispersion. The
method involves a combination of Laplace transform and WKB techniques for
finding approximate solutions to ordinary differential equations. The modified
wave equation is obtained by adding a higher order derivative term suppressed
by powers of a fundamental momentum scale to the ordinary wave equation.
Depending on the sign of this new term, high frequency modes propagate either
superluminally or subluminally. We show that the resulting spectrum of created
particles is thermal at the Hawking temperature, and further that the out-state
is a thermal state at the Hawking temperature, to leading order in , for
either modification.Comment: 26 pages, plain latex, 6 figures included using psfi
Event horizons and ergoregions in 3He
Event horizons for fermion quasiparticles naturally arise in moving textures
in superconductors and Fermi superfluids. We discuss the example of a planar
soliton moving in superfluid 3He-A, which is closely analogous to a charged
rotating black hole. The moving soliton will radiate quasiparticles via the
Hawking effect at a temperature of about 5 \mu K, and via vacuum polarization
induced by the effective `electromagnetic field' and `ergoregion'. Superfluid
3He-A thus appears to be a useful system for experimental and theoretical
simulations of quantum effects related to event horizons and ergoregions.Comment: RevTex, 8 pages, 3 figures, submitted to Phys. Rev. D, corrected
after referee repor
- …