47 research outputs found

    Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases.

    Get PDF
    Yuan et al. recently described an independent evaluation of several phenotype-driven gene prioritization methods for Mendelian disease on two separate, clinical datasets. Although they attempted to use default settings for each tool, we describe three key differences from those we currently recommend for our Exomiser and PhenIX tools. These influence how variant frequency, quality and predicted pathogenicity are used for filtering and prioritization. We propose that these differences account for much of the discrepancy in performance between that reported by them (15-26% diagnoses ranked top by Exomiser) and previously published reports by us and others (72-77%). On a set of 161 singleton samples, we show using these settings increases performance from 34% to 72% and suggest a reassessment of Exomiser and PhenIX on their datasets using these would show a similar uplift

    Phenotype-driven approaches to enhance variant prioritization and diagnosis of rare disease.

    Get PDF
    Rare disease diagnostics and disease gene discovery have been revolutionized by whole-exome and genome sequencing but identifying the causative variant(s) from the millions in each individual remains challenging. The use of deep phenotyping of patients and reference genotype-phenotype knowledge, alongside variant data such as allele frequency, segregation, and predicted pathogenicity, has proved an effective strategy to tackle this issue. Here we review the numerous tools that have been developed to automate this approach and demonstrate the power of such an approach on several thousand diagnosed cases from the 100,000 Genomes Project. Finally, we discuss the challenges that need to be overcome if we are going to improve detection rates and help the majority of patients that still remain without a molecular diagnosis after state-of-the-art genomic interpretation

    SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing.

    Get PDF
    Structural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically underascertained owing to sequencing technology limitations. Long-read sequencing enables comprehensive detection of SVs, but approaches for prioritization of candidate SVs are needed. Structural variant Annotation and analysis (SvAnna) assesses all classes of SVs and their intersection with transcripts and regulatory sequences, relating predicted effects on gene function with clinical phenotype data. SvAnna places 87% of deleterious SVs in the top ten ranks. The interpretable prioritizations offered by SvAnna will facilitate the widespread adoption of long-read sequencing in diagnostic genomics. SvAnna is available at https://github.com/TheJacksonLaboratory/SvAnn a

    GA4GH Phenopackets: A Practical Introduction.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases

    GA4GH Phenopackets: A Practical Introduction

    Full text link
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases

    A mouse informatics platform for phenotypic and translational discovery

    Get PDF
    The International Mouse Phenotyping Consortium (IMPC) is providing the world’s first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers

    The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.

    Get PDF
    Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch\u27s APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch\u27s data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch\u27s analytic tools by developing a customized plugin for OpenAI\u27s ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app

    The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.

    Get PDF
    Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics
    corecore