5,647 research outputs found

    The 3-edge-colouring problem on the 4-8 and 3-12 lattices

    Full text link
    We consider the problem of counting the number of 3-colourings of the edges (bonds) of the 4-8 lattice and the 3-12 lattice. These lattices are Archimedean with coordination number 3, and can be regarded as decorated versions of the square and honeycomb lattice, respectively. We solve these edge-colouring problems in the infinite-lattice limit by mapping them to other models whose solution is known. The colouring problem on the 4-8 lattice is mapped to a completely packed loop model with loop fugacity n=3 on the square lattice, which in turn can be mapped to a six-vertex model. The colouring problem on the 3-12 lattice is mapped to the same problem on the honeycomb lattice. The 3-edge-colouring problems on the 4-8 and 3-12 lattices are equivalent to the 3-vertex-colouring problems (and thus to the zero-temperature 3-state antiferromagnetic Potts model) on the "square kagome" ("squagome") and "triangular kagome" lattices, respectively.Comment: 10 pages, 4 figures (2 in colour). Added discussion, 2 refs. in Sec.

    Distinct nature of static and dynamic magnetic stripes in cuprate superconductors

    Get PDF
    We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La2_2CuO4+y_{4+y}. We find that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. We conclude that the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, but rather that the signals originate from different domains in the sample. These domains may be related by structural twinning, or may be entirely different phases, where the static stripes in one phase are pinned versions of the dynamic stripes in the other. Our results explain earlier observations of unusual dispersions in underdoped La2x_{2-x}Srx_xCuO4_{4} (x=0.07x=0.07) and La2x_{2-x}Bax_xCuO4_{4} (x=0.095x=0.095). Our findings are relevant for all compounds exhibiting magnetic stripes, and may thus be a vital part in unveiling the nature of high temperature superconductivity

    Two-dimensional O(n) model in a staggered field

    Full text link
    Nienhuis' truncated O(n) model gives rise to a model of self-avoiding loops on the hexagonal lattice, each loop having a fugacity of n. We study such loops subjected to a particular kind of staggered field w, which for n -> infinity has the geometrical effect of breaking the three-phase coexistence, linked to the three-colourability of the lattice faces. We show that at T = 0, for w > 1 the model flows to the ferromagnetic Potts model with q=n^2 states, with an associated fragmentation of the target space of the Coulomb gas. For T>0, there is a competition between T and w which gives rise to multicritical versions of the dense and dilute loop universality classes. Via an exact mapping, and numerical results, we establish that the latter two critical branches coincide with those found earlier in the O(n) model on the triangular lattice. Using transfer matrix studies, we have found the renormalisation group flows in the full phase diagram in the (T,w) plane, with fixed n. Superposing three copies of such hexagonal-lattice loop models with staggered fields produces a variety of one or three-species fully-packed loop models on the triangular lattice with certain geometrical constraints, possessing integer central charges 0 <= c <= 6. In particular we show that Benjamini and Schramm's RGB loops have fractal dimension D_f = 3/2.Comment: 40 pages, 17 figure

    Critical points in coupled Potts models and critical phases in coupled loop models

    Get PDF
    We show how to couple two critical Q-state Potts models to yield a new self-dual critical point. We also present strong evidence of a dense critical phase near this critical point when the Potts models are defined in their completely packed loop representations. In the continuum limit, the new critical point is described by an SU(2) coset conformal field theory, while in this limit of the the critical phase, the two loop models decouple. Using a combination of exact results and numerics, we also obtain the phase diagram in the presence of vacancies. We generalize these results to coupling two Potts models at different Q.Comment: 23 pages, 10 figure

    Boundary conformal field theories and loop models

    Full text link
    We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices. These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.Comment: 23 Pages, major changes! title change

    Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling

    Get PDF
    We calculate the widths, migration barriers, effective masses, and quantum tunneling rates of kinks and jogs in extended screw dislocations in copper, using an effective medium theory interatomic potential. The energy barriers and effective masses for moving a unit jog one lattice constant are close to typical atomic energies and masses: tunneling will be rare. The energy barriers and effective masses for the motion of kinks are unexpectedly small due to the spreading of the kinks over a large number of atoms. The effective masses of the kinks are so small that quantum fluctuations will be important. We discuss implications for quantum creep, kink--based tunneling centers, and Kondo resonances

    Dimer and fermionic formulations of a class of colouring problems

    Full text link
    We show that the number Z of q-edge-colourings of a simple regular graph of degree q is deducible from functions describing dimers on the same graph, viz. the dimer generating function or equivalently the set of connected dimer correlation functions. Using this relationship to the dimer problem, we derive fermionic representations for Z in terms of Grassmann integrals with quartic actions. Expressions are given for planar graphs and for nonplanar graphs embeddable (without edge crossings) on a torus. We discuss exact numerical evaluations of the Grassmann integrals using an algorithm by Creutz, and present an application to the 4-edge-colouring problem on toroidal square lattices, comparing the results to numerical transfer matrix calculations and a previous Bethe ansatz study. We also show that for the square, honeycomb, 3-12, and one-dimensional lattice, known exact results for the asymptotic scaling of Z with the number of vertices can be expressed in a unified way as different values of one and the same function.Comment: 16 pages, 2 figures, 2 tables. v2: corrected an inconsistency in the notatio

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions

    Get PDF
    We study the chromatic polynomial P_G(q) for m \times n square- and triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin--Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.Comment: 55 pages (LaTeX2e). Includes tex file, three sty files, and 22 Postscript figures. Also included are Mathematica files transfer4_sq.m and transfer4_tri.m. Journal versio
    corecore