2,138 research outputs found

    Application of advanced brain positron emission tomography-based molecular imaging for a biological framework in neurodegenerative proteinopathies

    Get PDF
    IntroductionA rapid transition from a clinical‐based classification to a pathology‐based classification of neurodegenerative conditions, largely promoted by the increasing availability of imaging biomarkers, is emerging. The Framework for Innovative Multi‐tracer molecular Brain Imaging, funded by the EU Joint Program ‐ Neurodegenerative Disease Research 2016 “Working Groups for Harmonisation and Alignment in Brain Imaging Methods for Neurodegeneration,” aimed at providing a roadmap for the applications of established and new molecular imaging techniques in dementia.MethodsWe consider current and future implications of adopting a pathology‐based framework for the use and development of positron emission tomography techniques.ResultsThis approach will enhance efforts to understand the multifactorial etiology of Alzheimer's disease and other dementias.DiscussionThe availability of pathology biomarkers will soon transform clinical and research practice. Crucially, a comprehensive understanding of strengths and caveats of these techniques will promote an informed use to take full advantage of these tools.</p

    Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    Get PDF
    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. © 2013 Pope et al

    Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.

    Get PDF
    Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body

    An integrated MR/PET system: prospective applications

    Get PDF
    Radiology is strongly depending on medical imaging technology and consequently directing technological progress. A novel technology can only be established, however, if improved diagnostic accuracy influence on therapeutic management and/or overall reduced cost can be evidenced. It has been demonstrated recently that Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can technologically be integrated into one single hybrid system. Some scientific arguments on the benefits are obvious, e.g., that simultaneous imaging of morphological and functional information will improve tissue characterization. However, crossfire of questions still remains: What unmet radiological needs are addressed by the novel system? What level of hardware integration is reasonable, or would software-based image co-registration be sufficient? Will MR/PET achieve higher diagnostic accuracy compared to separate imaging? What is the added value compared to other hybrid imaging modalities like PET/CT? And finally, is the system economically reasonable and has the potential to reduce overall costs for therapy planning and monitoring? This article tries to highlight some perspectives of applying an integrated MR/PET system for simultaneous morphologic and functional imaging

    The relationship between endogenous thymidine concentrations and [F-18]FLT uptake in a range of preclinical tumour models

    Get PDF
    BACKGROUND: Recent studies have shown that 3′-deoxy-3′-[18F] fluorothymidine ([18F]FLT)) uptake depends on endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine concentrations and whether they correlated with [18F]FLT uptake across a broad spectrum of murine cancer models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and spontaneous tumours, from six research centres, and a subset was compared for [18F]FLT uptake, described by the maximum and mean tumour-to-liver uptake ratio (TTL) and SUV. RESULTS: The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [18F]FLT injection, determined in 14 of the 22 tumour models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake. TTL did not correlate with tumour thymidine concentrations. CONCLUSIONS: Endogenous tumour thymidine concentrations alone are not predictive of [18F]FLT uptake in murine cancer models

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Putting it into perspective: Mathematics in the undergraduate science curriculum

    Get PDF
    Mathematics and science are tightly interwoven, yet they are often treated as distinct disciplines in the educational context. This study details the development, implementation and outcomes of a teaching intervention that highlights the links between mathematics and science, in the form of a first-year interdisciplinary course. A mixed method study using surveys and focus groups was employed to investigate undergraduate science students' perceptions of their experiences. Findings reveal that students bring strong beliefs about the nature of mathematics and science from secondary school, which can impact significanly on the success of interdisciplinary science-mathematics courese at the teritary level. Despite this, a range of beneficial outcomes can arise from such courses when they are delivered within a framework of analysing real-world issues. However, students with weak mathematical skills derived little benefit from an interdisciplinary approach and are likely to disengage from learning, in comparision with students who enter university with a solid foundation in mathematics

    Gemcitabine Mechanism of Action Confounds Early Assessment of Treatment Response by 3'-Deoxy-3'-[18^{18}F]Fluorothymidine in Preclinical Models of Lung Cancer

    Get PDF
    3'-Deoxy-3'-[18^{18}F]fluorothymidine positron emission tomography ([18^{18}F]FLT-PET) and diffusion-weighted MRI (DW-MRI) are promising approaches to monitor tumor therapy response. Here, we employed these two imaging modalities to evaluate the response of lung carcinoma xenografts in mice after gemcitabine therapy. Caliper measurements revealed that H1975 xenografts responded to gemcitabine treatment, whereas A549 growth was not affected. In both tumor models, uptake of [18^{18}F]FLT was significantly reduced 6 hours after drug administration. On the basis of the gemcitabine concentration and [18^{18}F]FLT excretion measured, this was presumably related to a direct competition of gemcitabine with the radiotracer for cellular uptake. On day 1 after therapy, [18^{18}F]FLT uptake was increased in both models, which was correlated with thymidine kinase 1 (TK1) expression. Two and 3 days after drug administration, [18^{18}F]FLT uptake as well as TK1 and Ki67 expression were unchanged. A reduction in [18^{18}F]FLT in the responsive H1975 xenografts could only be noted on day 5 of therapy. Changes in ADCmean_{mean} in A549 xenografts 1 or 2 days after gemcitabine did not seem to be of therapy-related biological relevance as they were not related to cell death (assessed by caspase-3 IHC and cellular density) or tumor therapy response. Taken together, in these models, early changes of [18^{18}F]FLT uptake in tumors reflected mechanisms, such as competing gemcitabine uptake or gemcitabine-induced thymidylate synthase inhibition, and only reflected growth-inhibitory effects at a later time point. Hence, the time point for [18^{18}F]FLT-PET imaging of tumor response to gemcitabine is of crucial importance.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC1003 – CiM), University of Munster (Münster, Germany)

    Gemcitabine Mechanism of Action Confounds Early Assessment of Treatment Response by 3'-Deoxy-3'-[18^{18}F]Fluorothymidine in Preclinical Models of Lung Cancer

    Get PDF
    3'-Deoxy-3'-[18^{18}F]fluorothymidine positron emission tomography ([18^{18}F]FLT-PET) and diffusion-weighted MRI (DW-MRI) are promising approaches to monitor tumor therapy response. Here, we employed these two imaging modalities to evaluate the response of lung carcinoma xenografts in mice after gemcitabine therapy. Caliper measurements revealed that H1975 xenografts responded to gemcitabine treatment, whereas A549 growth was not affected. In both tumor models, uptake of [18^{18}F]FLT was significantly reduced 6 hours after drug administration. On the basis of the gemcitabine concentration and [18^{18}F]FLT excretion measured, this was presumably related to a direct competition of gemcitabine with the radiotracer for cellular uptake. On day 1 after therapy, [18^{18}F]FLT uptake was increased in both models, which was correlated with thymidine kinase 1 (TK1) expression. Two and 3 days after drug administration, [18^{18}F]FLT uptake as well as TK1 and Ki67 expression were unchanged. A reduction in [18^{18}F]FLT in the responsive H1975 xenografts could only be noted on day 5 of therapy. Changes in ADCmean_{mean} in A549 xenografts 1 or 2 days after gemcitabine did not seem to be of therapy-related biological relevance as they were not related to cell death (assessed by caspase-3 IHC and cellular density) or tumor therapy response. Taken together, in these models, early changes of [18^{18}F]FLT uptake in tumors reflected mechanisms, such as competing gemcitabine uptake or gemcitabine-induced thymidylate synthase inhibition, and only reflected growth-inhibitory effects at a later time point. Hence, the time point for [18^{18}F]FLT-PET imaging of tumor response to gemcitabine is of crucial importance.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC1003 – CiM), University of Munster (Münster, Germany)
    corecore