3,326 research outputs found

    The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: constraints provided by InSAR and body wave seismology

    Get PDF
    By combining observations from satellite radar, body wave seismology and optical imagery, we have determined the fault segmentation and sequence of ruptures for the 2010 Mw 6.8 Yushu (China) earthquake. We have mapped the fault trace using displacements from SAR image matching, interferometric phase and coherence, and 2.5 m SPOT-5 satellite images. Modeling the event as an elastic dislocation with three segments fitted to the fault trace suggests that the southeast and northwest segments are near vertical, with the central segment dipping 70° to the southwest; slip occurs mainly in the upper 10 km, with a maximum slip of 1.5 m at a depth of 4 km on the southeastern segment. The maximum slip in the top 1 km (i.e., near surface) is up to 1.2 m, and inferred locations of significant surface rupture are consistent with displacements from SAR image matching and field observations. The radar interferograms show rupture over a distance of almost 80 km, much larger than initial seismological and field estimates of the length of the fault. Part of this difference can be attributed to slip on the northwestern segment of the fault being due to an Mw 6.1 aftershock two hours after the main event. The remaining difference can be explained by a non-uniform slip distribution with much of the moment release occurring at depths of less than 10 km. The rupture on the central and southeastern segments of the fault in the main shock propagated at a speed of 2.5 km/s southeastward toward the town of Yushu located at the end of this segment, accounting for the considerable building damage. Strain accumulation since the last earthquake on the fault segment beyond Yushu is equivalent to an Mw 6.5 earthquake

    A new lower bound approach for single-machine multicriteria scheduling

    Get PDF
    The concept of maximum potential improvement has played an important role in computing lower bounds for single-machine scheduling problems with composite objective functions that are linear in the job completion times. We introduce a new method for lower bound computation; objective splitting. We show that it dominates the maximum potential improvement method in terms of speed and quality

    Preclinical detection of infectivity and disease-specific PrP in blood throughout the incubation period of prion disease

    Get PDF
    Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative disorder characterised by accumulation of pathological isoforms of the prion protein, PrP. Although cases of clinical vCJD are rare, there is evidence there may be tens of thousands of infectious carriers in the United Kingdom alone. This raises concern about the potential for perpetuation of infection via medical procedures, in particular transfusion of contaminated blood products. Accurate biochemical detection of prion infection is crucial to mitigate risk and we have previously reported a blood assay for vCJD. This assay is sensitive for abnormal PrP conformers at the earliest stages of preclinical prion disease in mice and precedes the maximum infectious titre in blood. Not only does this support the possibility of screening asymptomatic individuals, it will also facilitate the elucidation of the complex relationship that exists between the ensemble of abnormal PrP conformers present in blood and the relationship to infectivity

    Nested recursions with ceiling function solutions

    Full text link
    Consider a nested, non-homogeneous recursion R(n) defined by R(n) = \sum_{i=1}^k R(n-s_i-\sum_{j=1}^{p_i} R(n-a_ij)) + nu, with c initial conditions R(1) = xi_1 > 0,R(2)=xi_2 > 0, ..., R(c)=xi_c > 0, where the parameters are integers satisfying k > 0, p_i > 0 and a_ij > 0. We develop an algorithm to answer the following question: for an arbitrary rational number r/q, is there any set of values for k, p_i, s_i, a_ij and nu such that the ceiling function ceiling{rn/q} is the unique solution generated by R(n) with appropriate initial conditions? We apply this algorithm to explore those ceiling functions that appear as solutions to R(n). The pattern that emerges from this empirical investigation leads us to the following general result: every ceiling function of the form ceiling{n/q}$ is the solution of infinitely many such recursions. Further, the empirical evidence suggests that the converse conjecture is true: if ceiling{rn/q} is the solution generated by any recursion R(n) of the form above, then r=1. We also use our ceiling function methodology to derive the first known connection between the recursion R(n) and a natural generalization of Conway's recursion.Comment: Published in Journal of Difference Equations and Applications, 2010. 11 pages, 1 tabl

    Radiometric dates of uplifted marine fauna in Greece:Implications for the interpretation of recent earthquake and tectonic histories using lithophagid dates

    Get PDF
    n AD 365 a great (Mw N 8) earthquake lifted up western Crete, exposing a shoreline encrusted by marine organisms, and up to 10 m of marine substrate beneath it. Radiocarbon ages determined for corals and bryozoans exposed between the paleo-shoreline and present sea level are consistent, within measurement error, with each other and with the date of the earthquake. But radiocarbon ages determined for the boring bivalve Lithophaga lithophaga found on the same substrate are at least 350 years, and up to 2000 years, older than the date of the earthquake that lifted them above sea level. These observations reveal two important effects that limit the use of radiocarbon lithophagid ages in tectonic and paleoseismological studies. The first is that the exceptional preservation potential of lithophagids allows them to remain intact and in situ long after natural death, while the substrate continues to be colonised until eventual uplift. The second, which we confirm with radiocarbon analysis of museum specimens of known age, is the incorporation of old (14C-free) carbon into lithophagid shells from the limestone host rock into which the lithophagids bored. The two effects are both significant in Crete and central Greece, and can cause the radiocarbon lithophagid ages to be up to 2000 years older than the uplift event which exposed them. Understanding these effects is important because lithophagids are far more abundantly preserved, and used to date uplift, than most other marine organisms. This study shows that they can rarely be used to distinguish uplift events, or date them to better than 1000 years, or even to distinguish whether observed uplift occurred in a single or in multiple events. After taking account of these uncertainties, the ages of the lithophagids are, however, consistent with the hypothesis that the highest prominent marine notches and exposed lithophagid holes within a few metres of sea level in Greece formed when sea level became relatively stable ~ 6000 years ago, following rapid rise after the last glacial maximum

    Neutrino oscillations in the Sun probe long-range leptonic forces

    Get PDF
    Lepton number charges might be the source of long range forces. If one accepts that neutrinos produced in the Sun do indeed oscillate while crossing the interior of the Sun, then the shift in the phase of the neutrino wavefunction caused by an hypothetical potential associated to the leptonic charge of the electrons in the Sun could affect the oscillation pattern beyond what is actually observed. We show that a "fine structure" constant αL\alpha_{L} in excess of 6.4×10546.4 \times 10^{-54} is incompatible with present observational data. This bound is not valid for forces whose range is shorter than the size of the Sun.Comment: 6 pages, no figures. References adde

    Integral equation method for the electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials

    Full text link
    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.Comment: 14pages, 3figure

    On the energy leakage of discrete wavelet transform

    Get PDF
    The energy leakage is an inherent deficiency of discrete wavelet transform (DWT) which is often ignored by researchers and practitioners. In this paper, a systematic investigation into the energy leakage is reported. The DWT is briefly introduced first, and then the energy leakage phenomenon is described using a numerical example as an illustration and its effect on the DWT results is discussed. Focusing on the Daubechies wavelet functions, the band overlap between the quadrature mirror analysis filters was studied and the results reveal that there is an unavoidable tradeoff between the band overlap degree and the time resolution for the DWT. The dependency of the energy leakage to the wavelet function order was studied by using a criterion defined to evaluate the severity of the energy leakage. In addition, a method based on resampling technique was proposed to relieve the effects of the energy leakage. The effectiveness of the proposed method has been validated by numerical simulation study and experimental study
    corecore