130 research outputs found
A real-time proximity querying algorithm for haptic-based molecular docking
Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction forces on the device, and guide the molecules to their binding pose. Haptimol_RD is designed to run on consumer level hardware, i.e. there is no need for specialized/proprietary hardware
Linear time distance transforms for quadtrees
Linear time algorithms are given for computing the chessboard distance transform for both pointer-based and linear quadtree representations. Comparisons between algorithmic styles for the two representations are made. Both versions of the algorithm consist of a pair of tree traversals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29144/1/0000186.pd
Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images
A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function
Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection
[EN] We present a novel approach to 3D structural shape optimization that leans on an Immersed Boundary Method. A boundary tracking strategy based on evaluating the intersections between a fixed Cartesian grid and the evolving geometry sorts elements as internal, external and intersected. The integration procedure used by the NURBS-Enhanced Finite Element Method accurately accounts for the nonconformity between the fixed embedding discretization and the evolving structural shape, avoiding the creation of a boundary-fitted mesh for each design iteration, yielding in very efficient mesh generation process. A Cartesian hierarchical data structure improves the efficiency of the analyzes, allowing for trivial data sharing between similar entities or for an optimal reordering of thematrices for the solution of the system of equations, among other benefits. Shape optimization requires the sufficiently accurate structural analysis of a large number of different designs, presenting the computational cost for each design as a critical issue. The information required to create 3D Cartesian h- adapted mesh for new geometries is projected from previously analyzed geometries using shape sensitivity results. Then, the refinement criterion permits one to directly build h-adapted mesh on the new designs with a specified and controlled error level. Several examples are presented to show how the techniques here proposed considerably improve the computational efficiency of the optimization process.The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46317-R and the FPI program (BES-2011-044080), and the Generalitat Valenciana through the project PROMETEO/2016/007.Marco, O.; RĂłdenas, J.; Albelda Vitoria, J.; Nadal, E.; Tur Valiente, M. (2017). Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection. Structural and Multidisciplinary Optimization. 1-21. https://doi.org/10.1007/s00158-017-1875-1S121MATLAB version 8.3.0.532 (R2014a) (2014) Documentation. The Mathworks, Inc., Natick, MassachusettsAbel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467Amestoy P, Davis T, Duff I (1996) An approximate minimum degree ordering algorithm. SIAM J Matrix Anal Appl 17(4):886–905Barth W, StĂĽrzlinger W (1993) Efficient ray tracing for Bezier and B-spline surfaces. Comput Graph 17 (4):423–430Bennett J A, Botkin M E (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23(3):459–464Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44 (3):247–267Bugeda G, Oliver J (1993) A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng 36(18):3161–3185Bugeda G, RĂłdenas J J, Oñate E (2008) An integration of a low cost adaptive remeshing strategy in the solution of structural shape optimization problems using evolutionary methods. Comput Struct 86(13–14):1563–1578Chang K, Choi K K (1992) A geometry-based parameterization method for shape design of elastic solids. Mech Struct Mach 20(2):215–252Cho S, Ha S H (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70Belegundu D, Zhang YMS, Salagame R (1991) The natural approach for shape optimization with mesh distortion control. Tech. rep., Penn State UniversityDavis T A, Gilbert J R, Larimore S, Ng E (2004) An approximate column minimum degree ordering algorithm. ACM Trans Math Softw 30(3):353–376Doctor L J, Torborg J G (1981) Display techniques for octree-encoded objects. IEEE Comput Graph Appl 1(3):29–38Dunning P D, Kim H A, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem Anal Des 47(8):933–941DĂĽster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768–3782Escobar J M, Montenegro R, RodrĂguez E, CascĂłn J M (2014) The meccano method for isogeometric solid modeling and applications. Eng Comput 30(3):331–343Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016Fries T P, Omerović S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371Fuenmayor F J, Oliver J L (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061Fuenmayor F J, Oliver J L, RĂłdenas J J (1997) Extension of the Zienkiewicz-Zhu error estimator to shape sensitivity analysis. Int J Numer Methods Eng 40(8):1413–1433GarcĂa-RuĂz M J, Steven G P (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16 (2):145–164Gill P, Murray W, Saunders M, Wright M (1984) Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans Math Software 10:282–298González-Estrada O A, Nadal E, RĂłdenas J J, Kerfriden P, Bordas S P A, Fuenmayor F J (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976Ha S H, Choi K K, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42(3):417–428Haftka R T, Grandhi R V (1986) Structural shape optimization: A survey. Comput Methods Appl Mech Eng 57(1):91–106Haslinger J, Jedelsky D (1996) Genetic algorithms and fictitious domain based approaches in shape optimization. Struc Optim 12:257–264Hughes T J R, Cottrell J A, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement. Comput Methods Appl Mech Eng 194:4135–4195Jackins C L, Tanimoto S L (1980) Oct-tree and their use in representing three-dimensional objects. Comput Graphics Image Process 14(3):249–270Kajiya J T (1982) Ray Tracing Parametric Patches. SIGGRAPH Comput Graph 16(3):245–254van Keulen F, Haftka R T, Kim N (2005) Review of options for structural design sensitivity analysis. Part I: linear systems. Comput Methods Appl Mech Eng 194(30-33):3213–3243Kibsgaard S (1992) Sensitivity analysis-the basis for optimization. Int J Numer Methods Eng 34(3):901–932Kikuchi N, Chung K Y, Torigaki T, Taylor J E (1986) Adaptive finite element methods for shape optimization of linearly elastic structures. Comput Methods Appl Mech Eng 57(1):67–89Kim N H, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194(30–33):3291–3314Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinuous functions in 3d. Comput Methods Appl Mech Eng 306(1):406–426Kunisch K, Peichl G (1996) Numerical gradients for shape optimization based on embedding domain techniques. Comput Optim 18:95–114Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Computer-Aided Design 43(11):1427–1437Lian H, Kerfriden P, Bordas S P A (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106 (12):972–1017Liu L, Zhang Y, Hughes T J R, Scott M A, Sederberg T W (2014) Volumetric T-spline Construction using Boolean Operations. Eng Comput 30(4):425–439Marco O, Sevilla R, Zhang Y, RĂłdenas J J, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103:445–468Marco O, RĂłdenas J J, Fuenmayor FJ, Tur M (2017a) An extension of shape sensitivity analysis to an immersed boundary method based on cartesian grids. Computational Mechanics SubmittedMarco O, RĂłdenas J J, Navarro-JimĂ©nez JM, Tur M (2017b) Robust h-adaptive meshing strategy for arbitrary cad geometries in a cartesian grid framework. Computers & Structures SubmittedMeagher D (1980) Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Tech. Rep. IPL-TR-80-11 I, Rensselaer Polytechnic InstituteMoita J S, Infante J, Mota C M, Mota C A (2000) Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct 76(1–3):407–420Nadal E (2014) Cartesian Grid FEM (cgFEM): High Performance h-adaptive FE Analysis with Efficient Error Control. Application to Structural Shape Optimization. PhD Thesis. Universitat Politècnica de ValènciaNadal E, RĂłdenas J J, Albelda J, Tur M, TarancĂłn J E, Fuenmayor F J (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2015) A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T (2015) Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul 117:89–116Nishita T, Sederberg TW, Kakimoto M (1990) Ray Tracing Trimmed Rational Surface Patches. SIGGRAPH Comput Graph 24(4):337–345Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer-Verlag, New YorkPandey P C, Bakshi P (1999) Analytical response sensitivity computation using hybrid finite elements. Comput Struct 71(5):525–534Parvizian J, DĂĽster A, Rank E (2007) Finite Cell Method: h- and p- Extension for Embedded Domain Methods in Solid Mechanics. Comput Mech 41(1):121–133Peskin C S (1977) Numerical Analysis of Blood Flow in the Heart. J Comput Phys 25:220–252Poldneff M J, Rai I S, Arora J S (1993) Implementation of design sensitivity analysis for nonlinear structures. AIAA J 31(11):2137–2142Powell M (1983) Variable metric methods for constrained optimization. In: Bachem A, Grotschel M, Korte B (eds) Mathematical Programming: The State of the Art, Springer, Berlin, Heidelberg, pp 288–311Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663Riehl S, Steinmann P (2016) On structural shape optimization using an embedding domain discretization technique. Int J Numer Methods Eng 109(9):1315–1343RĂłdenas J J, TarancĂłn J E, Albelda J, Roda A, Fuenmayor F J (2005) Hierarchical Properties in Elements Obtained by Subdivision: a Hierarquical h-adaptivity Program. In: DĂez P, Wiberg N E (eds) Adaptive Modeling and Simulation, p 2005RĂłdenas J J, Corral C, Albelda J, Mas J, Adam C (2007a) Nested domain decomposition direct and iterative solvers based on a hierarchical h-adaptive finite element code. In: Runesson K, DĂez P (eds) Adaptive Modeling and Simulation 2007, Internacional Center for Numerical Methods in Engineering (CIMNE), pp 206–209RĂłdenas J J, Tur M, Fuenmayor F J, Vercher A (2007b) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727RĂłdenas J J, Bugeda G, Albelda J, Oñate E (2011) On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int J Numer Methods Eng 87(11):1105–1126Schillinger D, Ruess M (2015) The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Meth Eng 22(3):391– 455Sevilla R, Fernández-MĂ©ndez S, Huerta A (2011a) 3D-NURBS-enhanced Finite Element Method (NEFEM). Int J Numer Methods Eng 88(2):103–125Sevilla R, Fernández-MĂ©ndez S, Huerta A (2011b) Comparison of High-order Curved Finite Elements. Int J Numer Methods Eng 87(8):719–734Sevilla R, Fernández-MĂ©ndez S, Huerta A (2011c) NURBS-enhanced Finite Element Method (NEFEM): A Seamless Bridge Between CAD and FEM. Arch Comput Meth Eng 18(4):441–484Sweeney M, Bartels R (1986) Ray tracing free-form b-spline surfaces. IEEE Comput Graph Appl 6(2):41–49Toth D L (1985) On Ray Tracing Parametric Surfaces. SIGGRAPH Comput Graph 19(3):171–179Tur M, Albelda J, Nadal E, RĂłdenas J J (2014) Imposing dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Int J Numer Methods Eng 98(6):399–417Tur M, Albelda J, Marco O, RĂłdenas J J (2015) Stabilized Method to Impose Dirichlet Boundary Conditions using a Smooth Stress Field. Comput Methods Appl Mech Eng 296:352–375Yao T, Choi KK (1989) 3-d shape optimal design and automatic finite element regridding. Int J Numer Methods Eng 28(2):369–384Zhang L, Gerstenberger A, Wang X, Liu W K (2004) Immersed Finite Element Method. Comput Methods Appl Mech Eng 293(21):2051–2067Zhang Y, Wang W, Hughes T J R (2013) Conformal Solid T-spline Construction from Boundary T-spline Representations. Comput Mech 6(51):1051–1059Zienkiewicz O C, Zhu J Z (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int J Numer Methods Eng 24(2):337–35
Breaking the cycle of loneliness?: Psychological effects of a friendship enrichment program for older women
Contains fulltext :
56871.pdf (publisher's version ) (Closed access)The present study examines effects of participation in the friendship enrichment program, an intervention that is designed to stimulate improvement in friendship, self-esteem and subjective well-being, as well as reduction in loneliness among older women. The intervention group was compared to a control group of women who were interested in the program or in improving their friendships. All respondents had been studied at three points in time: at a baseline, prior to the program; three months later, and 9-10 months after baseline. The results indicate that the program was successful in attracting lonely older women who were willing to work on their friendships. Many participants reported improvement in the quantity and quality of their friendships. The program was moderately successful in stimulating improvement in subjective well-being and awareness of the need for an active stance toward achieving goals in social relations, especially in friendship. Loneliness among the participants was reduced, but it also declined in the control group, and both groups continued to experience loneliness. One conclusion is that an effective intervention to help older women reduce their loneliness should be multi-dimensional focusing not only on friendship but also on other personal and situational factors contributing to loneliness.9 p
- …