1,936 research outputs found
Recommended from our members
Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age
We propose to use a Gibbs free energy function as a measure of the human brain development. We adopt this approach to the development of the human brain over the human lifespan: from a prenatal stage to advanced age. We used proteomic expression data with the Gibbs free energy to quantify human brain’s protein–protein interaction networks. The data, obtained from BioGRID, comprised tissue samples from the 16 main brain areas, at different ages, of 57 post-mortem human brains. We found a consistent functional dependence of the Gibbs free energies on age for most of the areas and both sexes. A significant upward trend in the Gibbs function was found during the fetal stages, which is followed by a sharp drop at birth with a subsequent period of relative stability and a final upward trend toward advanced age. We interpret these data in terms of structure formation followed by its stabilization and eventual deterioration. Furthermore, gender data analysis has uncovered the existence of functional differences, showing male Gibbs function values lower than female at prenatal and neonatal ages, which become higher at ages 8 to 40 and finally converging at late adulthood with the corresponding female Gibbs functions
Visually narrating post-colonial lives: ghosts of war and empire
This paper is about two journeys: the first through the memories of an old soldier captured by the Japanese in the Second World War; the second through the present life to which this past gave rise, in which the old soldier tends the graves of his fellow soldiers as part of his current navigation by bus and taxi of the post-colonial landscape of Hong Kong
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Transit timings variations in the three-planet system: TOI-270
We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of ∼10 min and a super-period of ∼3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of Mb=1.48± 0.18, M⊕, Mc=6.20± 0.31, M⊕, and Md=4.20± 0.16, M⊕ for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets: eb = 0.0167 ± 0.0084, ec = 0.0044 ± 0.0006, and ed = 0.0066 ± 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization
An optimal trauma-informed pathway for PTSD, complex PTSD and other mental health and psychosocial impacts of trauma in prisons: an expert consensus statement
People in prisons have high levels of trauma exposure throughout their lives. Presentations are often complex, with a high prevalence of PTSD and CPTSD and other mental health comorbidities. Prisons themselves can be stressful and traumatising environments. There are challenges in the delivery of effective treatments for PTSD and CPTSD. There is a need for the development of effective clinical pathways for these conditions that are embedded within trauma-informed organisational approaches. Responding to this need, this report is the result of a multidisciplinary expert consensus meeting and review of the research literature on PTSD, CPTSD, associated comorbidities and optimal approaches to trauma-informed practice. The group consisted of 24 expert representatives from psychology, psychiatry, healthcare, academia, social care and Welsh Government. The meeting commenced with presentations on various aspects of the clinical pathway for PTSD and complex PTSD in prisons, and of applications of trauma-informed practice within prisons. Small sub-groups then provided practical recommendations and solutions relevant to their assigned topic. Findings were presented to all meeting attendees for another round of discussion and debate, until consensus was reached. The resulting recommendations provide guidance to improve identification, treatment and support for people living in prison who have experienced trauma
A sustainable blue economy may not be possible in Tanzania without cutting emissions.
Balancing blue growth with the conservation of wild species and habitats is a key challenge for global ocean management. This is exacerbated in Global South nations, such as Tanzania, where climate-driven ocean change requires delicate marine spatial planning (MSP) trade-offs to ensure climate resilience of marine resources relied upon by coastal communities. Here, we identified challenges and opportunities that climate change presents to the near-term spatial management of Tanzania's artisanal fishing sector, marine protected areas and seaweed farming. Specifically, spatial meta-analysis of climate modelling for the region was carried out to estimate the natural distribution of climate resilience in the marine resources that support these socially important sectors. We estimated changes within the next 20 and 40Â years, using modelling projections forced under global emissions trajectories, as well as a wealth of GIS and habitat suitability data derived from globally distributed programmes. Multi-decadal analyses indicated that long-term climate change trends and extreme weather present important challenges to the activity of these sectors, locally and regionally. Only in few instances did we identify areas exhibiting climate resilience and opportunities for sectoral expansion. Including these climate change refugia and bright spots in effective ocean management strategies may serve as nature-based solutions: promoting adaptive capacity in some of Tanzania's most vulnerable economic sectors; creating wage-gaining opportunities that promote gender parity; and delivering some economic benefits of a thriving ocean where possible. Without curbs in global emissions, however, a bleak future may emerge for globally valuable biodiversity hosted in Tanzania, and for its coastal communities, despite the expansion of protected areas or curbs in other pressures. Growing a sustainable ocean economy in this part of the Global South remains a substantial challenge without global decarbonization
- …