4,718 research outputs found

    Population response of triploid grass carp to declining levels of hydrilla in the Santee Cooper Reservoirs, South Carolina

    Get PDF
    Approximately 768,500 triploid grass carp ( Ctenopharyngodon idella Valenciennes) were stocked into the Santee Cooper reservoirs, South Carolina between 1989 and 1996 to control hydrilla ( Hydrilla verticillata (L.f.) Royle). Hydrilla coverage was reduced from a high of 17,272 ha during 1994 to a few ha by 1998. During 1997, 1998 and 1999, at least 98 triploid grass carp were collected yearly for population monitoring. Estimates of age, growth, and mortality, as well as population models, were used in the study to monitor triploid grass carp and predict population trends. Condition declined from that measured during a previous study in 1994. The annual mortality rate was estimated at 28% in 1997, 32% in 1998 and 39% in 1999; however, only the 1999 mortality rate was significantly different. Few (2 out of 98) of the triploid grass carp collected during 1999 were older than age 9. We expect increased mortality due to an aging population and sparse hydrilla coverage. During 1999, we estimated about 63,000 triploid grass carp system wide and project less than 3,000 fish by 2004, assuming no future stocking. management, population size Ctenopharyngodon idella, Hydrill

    Future Directions Of Management Science And Operations Management In Business School Curricula

    Get PDF
    The fields of Management Science (MS) and Operations Management (OM) have co-existed in business school curricula for over a half century. This paper examines five trends that point toward a bright future for Operations Management in the business curriculum. These trends include an increasing emphasis on global competition, the growth of the supply chain as a competitive weapon, more participation from the Operations function in formulating business strategies, the continued dominance of the service sector over the manufacturing sector in developed economies, and increasing demand for general management skills over technical skills for business school graduates. The de-emphasis on technical skills and the fact that MS techniques have been subsumed into other functional areas indicates that the future of Management Science in the business curriculum may not be as bright

    The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity

    Get PDF
    Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented

    Jet Interference Effects on a Model of a Single-Engine Four Jet V/STOL Airplane at Mach Numbers from 0.60 to 1.00

    Get PDF
    An investigation was conducted in the Langley 16-foot transonic tunnel to determine the interference from four exhaust jets on the aerodynamic characteristics of a model of a V/STOL airplane. The single- engine four-jet turbofan power plant of the airplane was simulated by inducing tunnel airflow through two large side inlets and injecting the decomposition products of hydrogen peroxide into the internal flow. The heated gas mixture was exhausted through four nozzles located on the sides of the fuselage under the wing, two near the wing leading edge and two forward of the trailing edge; the nozzles were deflected downward 1.5 deg and outward 5.0 deg to simulate cruise conditions. The wing of the model was a clipped delta with leading-edge sweep of 40 deg, aspect ratio of 3.06, taper ratio of 0.218, thickness-chord ratio of 0.09 at the root and 0.07 at the tip, and 10 deg negative dihedral. Aerodynamic and longitudinal stability coefficients were obtained for the model with the tail removed, and for horizontal-tail incidences of 0 deg and -5 deg. Data were obtained at Mach numbers from 0.60 to 1.00, angles of attack from 0 deg to 12 deg, and with jet total-pressure ratios up to 3.1. Jet operation generally caused a decrease in lift, an increase in pitching-moment coefficient, and a decrease in longitudinal stability at subsonic speeds. The jet interference effects on drag were detrimental at a Mach number of 0.60 and favorable at higher speeds for cruising-flight attitudes

    Computational Depth and Reducibility

    Get PDF
    This paper investigates Bennett\u27s notions of strong and weak computational depth (also called logical depth) for infinite binary sequences. Roughly, an infinite binary sequence x is defined to be weakly useful if every element of a non-negligible set of decidable sequences is reducible to x in recursively bounded time. It is shown that every weakly useful sequence is strongly deep. This result (which generalizes Bennett\u27s observation that the halting problem is strongly deep) implies that every high Turing degree contains strongly deep sequences. It is also shown that, in the sense of Baire category, almost every infinite binary sequence is weakly deep, but not strongly deep
    corecore