173 research outputs found
Multilevel quasiseparable matrices in PDE-constrained optimization
Optimization problems with constraints in the form of a partial differential
equation arise frequently in the process of engineering design. The
discretization of PDE-constrained optimization problems results in large-scale
linear systems of saddle-point type. In this paper we propose and develop a
novel approach to solving such systems by exploiting so-called quasiseparable
matrices. One may think of a usual quasiseparable matrix as of a discrete
analog of the Green's function of a one-dimensional differential operator. Nice
feature of such matrices is that almost every algorithm which employs them has
linear complexity. We extend the application of quasiseparable matrices to
problems in higher dimensions. Namely, we construct a class of preconditioners
which can be computed and applied at a linear computational cost. Their use
with appropriate Krylov methods leads to algorithms of nearly linear
complexity
Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming
In this paper we will discuss two variants of an inexact feasible interior
point algorithm for convex quadratic programming. We will consider two
different neighbourhoods: a (small) one induced by the use of the Euclidean
norm which yields a short-step algorithm and a symmetric one induced by the use
of the infinity norm which yields a (practical) long-step algorithm. Both
algorithms allow for the Newton equation system to be solved inexactly. For
both algorithms we will provide conditions for the level of error acceptable in
the Newton equation and establish the worst-case complexity results
An Interior-Point-Inspired algorithm for Linear Programs arising in Discrete Optimal Transport
Discrete Optimal Transport problems give rise to very large linear programs
(LP) with a particular structure of the constraint matrix. In this paper we
present a hybrid algorithm that mixes an interior point method (IPM) and column
generation, specialized for the LP originating from the Kantorovich Optimal
Transport problem. Knowing that optimal solutions of such problems display a
high degree of sparsity, we propose a column-generation-like technique to force
all intermediate iterates to be as sparse as possible. The algorithm is
implemented nearly matrix-free. Indeed, most of the computations avoid forming
the huge matrices involved and solve the Newton system using only a much
smaller Schur complement of the normal equations. We prove theoretical results
about the sparsity pattern of the optimal solution, exploiting the graph
structure of the underlying problem. We use these results to mix iterative and
direct linear solvers efficiently, in a way that avoids producing
preconditioners or factorizations with excessive fill-in and at the same time
guaranteeing a low number of conjugate gradient iterations. We compare the
proposed method with two state-of-the-art solvers and show that it can compete
with the best network optimization tools in terms of computational time and
memory usage. We perform experiments with problems reaching more than four
billion variables and demonstrate the robustness of the proposed method
Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations
Typically, nonlinear Support Vector Machines (SVMs) produce significantly
higher classification quality when compared to linear ones but, at the same
time, their computational complexity is prohibitive for large-scale datasets:
this drawback is essentially related to the necessity to store and manipulate
large, dense and unstructured kernel matrices. Despite the fact that at the
core of training a SVM there is a \textit{simple} convex optimization problem,
the presence of kernel matrices is responsible for dramatic performance
reduction, making SVMs unworkably slow for large problems. Aiming to an
efficient solution of large-scale nonlinear SVM problems, we propose the use of
the \textit{Alternating Direction Method of Multipliers} coupled with
\textit{Hierarchically Semi-Separable} (HSS) kernel approximations. As shown in
this work, the detailed analysis of the interaction among their algorithmic
components unveils a particularly efficient framework and indeed, the presented
experimental results demonstrate a significant speed-up when compared to the
\textit{state-of-the-art} nonlinear SVM libraries (without significantly
affecting the classification accuracy)
- …