20 research outputs found

    CAD/CAM techniques for the conservative and efficient management of tooth wear

    Get PDF
    The prevalence of tooth wear has increased significantly in recent decades. Whilst many treatment approaches are available, there is no consensus on the best materials or techniques. Advances in digital workflows have the potential to reduce the biological cost of treatment, improve treatment outcomes and reduce costs. This article describes modern CAD/CAM techniques which preserve tooth tissue and improve efficiency

    Outcome measures in facial prosthesis research: a systematic review

    Get PDF
    Statement of problem Facial prosthesis research uses a wide variety of outcome measures, which results in challenges when comparing the effectiveness of interventions among studies. Consensus is lacking regarding the most appropriate and meaningful outcome measures to use in facial prosthesis research to capture important perspectives. Purpose The purpose of the systematic review was to identify and synthesize outcome measures used in facial prosthesis research. Material and methods Electronic searches were performed in 11 databases (including nonpeer-reviewed literature). The citations were searched, and expert societies were contacted to identify additional studies. Inclusion criteria comprised studies of participants with facial defects who required or had received prosthetic rehabilitation with an external facial prosthesis. Exclusion criteria comprised participants with ocular prostheses, case reports, case series with fewer than 5 participants, laboratory-based studies, and studies published before 1980. Study selection was performed independently by 2 reviewers. Discrepancies were resolved through discussion or by a third reviewer. Outcome measures were synthesized with a categorization approach based on the perspective, theme, and subtheme of the outcome measures. Quality assessment was performed with an appraisal tool that enabled evaluation of studies with diverse designs. Results Database searching identified 13 058 records, and 7406 remained after duplications were removed. After initial screening, 189 potentially relevant records remained, and 186 full texts were located (98% retrieval rate). After full-text screening, 124 records were excluded. Citation searches and contact with expert societies identified 4 further records. In total, 69 articles (grouped into 65 studies) were included. Studies were categorized as per the perspective of their outcome measures, with the following findings: patient-reported (74% of studies), clinical indicators (34%), clinician-reported (8%), multiple viewpoints (6%), and independent observer-reported (3%). Patient-reported outcome measures included tools to assess satisfaction, quality of life, and psychologic health. Variability in the choice of outcome measures was evident among the studies, with many self-designed, unvalidated, condition-specific questionnaires reported. A greater number of outcome measure themes emerged over time; themes such as service delivery and health state utility have recently been evaluated. Conclusions Over the past 40 years, facial prosthesis research has focused on patient-reported outcome measures. Outcome measures relating to other perspectives have been used less frequently, although new themes appear to be emerging in the literature. Future research should use outcome measures with appropriate measurement properties for use with facial prosthetics

    Accuracy of capturing oncology facial defects with multimodal image fusion versus laser scanning

    No full text
    Statement of problem Fabrication of conventional facial prostheses is a labor-intensive process which traditionally requires an impression of the facial defect and surrounding tissues. Inaccuracies occur during the facial moulage because of soft-tissue compression, the patient's reflex movements, or the lack of support for the impression material. A variety of 3D imaging techniques have been introduced during the production of facial prostheses. However, the accuracy of the different imaging techniques has not been evaluated sufficiently in this clinical context. Purpose The purpose of this in vitro study was to compare the difference in accuracy of capturing oncology facial defects with multimodal image fusion and laser scanning against a cone beam computed tomography (CBCT) reference scan. Material and methods Ten gypsum casts of oncology facial defects were acquired. To produce reference models, a 3D volumetric scan was obtained using a CBCT scanner and converted into surface data using open-source medical segmentation software. This model was cropped to produce a CBCT mask using an open-source system for editing meshes. The multimodal image fusion model was created using stereophotogrammetry to capture the external facial features and a custom optical structured light scanner to record the defect. The gypsum casts were also scanned using a commercial 3D laser scanner to create the laser-scanned model. Analysis of the best fit of each experimental model to the CBCT mask was performed in MeshLab. The unsigned mean distance was used to measure the absolute deviation of each model from the CBCT mask. A paired-samples t test was conducted to compare the mean global deviation of the 2 imaging modalities from the CBCT masks (α=.05). Results A statistically significant difference was found in the mean global deviation between the multimodal imaging model (220 ±50 μm) and the laser-scanned model (170 ±70 μm); (t(9)=2.56, P=.031). The color error maps illustrated that the greatest error was located at sites distant to the prosthesis margins. Conclusions The laser-scanned models were more accurate; however, the mean difference of 50 μm is unlikely to be clinically significant. The laser scanner had limited viewing angles and a longer scan time which may limit its transferability to maxillofacial practice

    An in-vitro study to assess the feasibility, validity and precision of capturing oncology facial defects with multimodal image fusion

    No full text
    Aim Assess the feasibility, validity and precision of multimodal image fusion to capture oncology facial defects based on plaster casts. Methods Ten casts of oncology facial defects were acquired. To create gold standard models, a 3D volumetric scan of each cast was obtained with a cone beam computed tomography (CBCT) scanner (NewTomVG). This was converted into surface data using open-source medical segmentation software and cropped to produce a CBCT mask using an open-source system for editing meshes. For the experimental model, the external facial features were captured using stereophotogrammetry (DI4D) and the defect was recorded with a custom optical structured light scanner. The two meshes were aligned, merged and resurfaced using MeshLab to produce a fused model. Analysis was performed in MeshLab on the best fit of the fused model to the CBCT mask. The unsigned mean distance was used to measure the absolute deviation of each model from the CBCT mask. To assess the precision of the technique, the process of producing the fused model was repeated to create five models each for the casts representing the best, middle and worst results. Results Global mean deviation was 0.22 mm (standard deviation 0.05 mm). The precision of the method appeared to be acceptable although there was variability in the location of the error for the worst cast. Conclusion This method for merging two independent scans to produce a fused model shows strong potential as an accurate and repeatable method of capturing facial defects. Further research is required to explore its clinical use

    Respiratory response of the deep-sea amphipod Stephonyx biscayensis indicates bathymetric range limitation by temperature and hydrostatic pressure

    Get PDF
    Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing temperature with depth has continued. This study investigates the physiological tolerances of fed and starved specimens of the bathyal lysianassoid amphipod Stephonyx biscayensis at varying temperature to acute pressure exposure by measuring the rate of oxygen consumption. Acclimation to atmospheric pressure is shown to have no significant interaction with temperature and/or pressure effects. Similarly, starvation is shown to have no significant effect on the interaction of temperature and pressure. Subsequently, the effect of pressure on respiration rate is revealed to be dependent on temperature: pressure equivalent to 2000 m depth was tolerated at 1 and 3°C; pressure equivalent to 2500 m depth was tolerated at 5.5°C; at 10°C pressure equivalent to 3000 m depth was tolerated. The variation in tolerance is consistent with the natural distribution range reported for this species. There are clear implications for hypotheses relating to the observed phenomenon of a biodiversity bottleneck between 2000 and 3000 metres, and for the potential for bathymetric range shifts in response to global climate change
    corecore