17 research outputs found

    Efficiency of cold atmospheric plasma, cleaning powders and their combination for biofilm removal on two different titanium implant surfaces

    Get PDF
    Objectives: Biofilm removal is the decisive factor for the control of peri-implantitis. Cold atmospheric pressure plasma (CAP) can become an effective aid due to its ability to destroy and to inactivate bacterial biofilm residues. This study evaluated the cleaning efficiency of CAP, and air-polishing with glycine (APG) or erythritol (APE) containing powders alone or in combination with CAP (APG + CAP, APE + CAP) on sandblasted/acid etched, and anodised titanium implant surface. Materials and methods: On respective titanium discs, a 7-day ex vivo human biofilm was grown. Afterwards, the samples were treated with CAP, APG, APE, APG + CAP, and APE + CAP. Sterile and untreated biofilm discs were used for verification. Directly after treatment and after 5 days of incubation in medium at 37 °C, samples were prepared for examination by fluorescence microscopy. The relative biofilm fluorescence was measured for quantitative analyses. Results: Air-polishing with or without CAP removed biofilms effectively. The combination of air-polishing with CAP showed the best cleaning results compared to single treatments, even on day 5. Immediately after treatment, APE + CAP showed insignificant higher cleansing efficiency than APG + CAP. Conclusions: CAP supports mechanical cleansing and disinfection to remove and inactivate microbial biofilm on implant surfaces significantly. Here, the type of the powder was not important. The highest cleansing results were obtained on sandblasted/etched surfaces. Clinical relevance. Microbial residuals impede wound healing and re-osseointegration after peri-implantitis treatment. Air-polishing treatment removes biofilms very effectively, but not completely. In combination with CAP, microbial free surfaces can be achieved. The tested treatment regime offers an advantage during treatment of peri-implantitis

    Efficiency of biofilm removal by combination of water jet and cold plasma: an in-vitro study

    Get PDF
    Background: Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices. Methods: We compared the efficiency of a single treatment with a WJ or curette and cotton swab (CC) without or with adjunctive use of CAP (WJ + CAP, CC + CAP) to remove biofilm in vitro from rough titanium discs. Treatment efficacy was evaluated by measuring turbidity up to 72 h for bacterial re-growth or spreading of osteoblast-like cells (MG-63) after 5 days with scanning electron microscopy. With respect to application safety, the WJ and CAP instruments were examined according to basic regulations for medical devices. Results: After 96 h of incubation all WJ and CC treated disks were turbid but 67% of WJ + CAP and 46% CC + CAP treated specimens were still clear. The increase in turbidity after WJ treatment was delayed by about 20 h compared to CC treatment. In combination with CAP the cell coverage significantly increased to 82% (WJ + CAP) or 72% (CC + CAP), compared to single treatment 11% (WJ) or 10% (CC). Conclusion: The newly developed water jet device effectively removes biofilm from rough titanium surfaces in vitro and, in combination with the new CAP device, biologically acceptable surfaces allow osteoblasts to grow. WJ in combination with CAP leads to cleaner surfaces than the usage of curette and cotton swabs with or without subsequent plasma treatment. Our next step will be a clinical pilot study with these new devices to assess the clinical healing process

    Side effects by oral application of atmospheric pressure plasma on the mucosa in mice

    Get PDF
    Cold atmospheric pressure plasma (CAP) has been investigated with promising results for peri-implant diseases treatment. However, prior to in-vivo applications of CAP sources in humans, short-term harmful mucosal damage or other unwanted side effects have to be reviewed. 180 male mice (B6C3F1) were divided into twelve treatment groups (n = 15). The right buccal cheek mucosa was treated with CAP. The first and second group each received continuous 10 sec irradiation with 2 different plasma sources (kINPen09, PS-MWM). The third group was treated with the kINPen09 for one minute. Control groups were treated with a corresponding dose of ultraviolet light for 8 seconds or 48 seconds and the other one was left untreated. The animals were weighed before and after treatment. The animals were sacrificed one day or one week after exposure. Stained tissue samples were histologically examined for tissue damage independently by two experienced pathologists. One day after CAP treatment histological analysis showed focal mucosal erosion with superficial ulceration and necrosis accompanied by a mild inflammatory reaction. One week after CAP treatment, the mucosal defects were completely re-epithelialized, associated with remnants of granulation tissue in the stroma irrespective of treatment duration. Furthermore, no cytological atypia was found and no severe weight loss occurred. The control groups did not show any alterations at all. CAP treatment led to a superficial mucosal damage that healed within few days. Nonetheless, further long-term experiments are necessary to exclude undesirable side effects after longer observation time. Particularly, potential carcinogenic effects must be ruled out prior to the application of CAP treatment in daily dental practice

    Aufbau eines in vitro Modells zur Untersuchung des Konkrementabtrags mit dem Ultraschallgerät PerioScan®

    No full text
    Problem: Die effektive Reinigung der Wurzeloberfläche von bakteriellen und mineralisierten Belägen spielt eine entscheidende Rolle bei der Behandlung parodontaler Entzündungen. Die Überprüfung des Behandlungserfolgs und das Auffinden subgingivalen Zahnsteins während einer geschlossenen Behandlung ist in der täglichen Praxis und insbesondere für junge Kollegen eine Herausforderung. Neue Möglichkeiten könnten Neuentwicklungen, wie das in dieser vorliegenden Arbeit untersuchte Ultraschallgerät PerioScan® bieten. Es vereint die Eigenschaften Konkremente auf der Wurzeloberfläche zu detektieren und direkt zu entfernen. Ziel: Ziel der vorliegenden Arbeit war die Entwicklung eines geeigneten in vitro Modells für die Untersuchung des Ultraschallgerätes PerioScan® hinsichtlich der Sensitivität, Spezifität, Abtragsleistung und Detektionszeit jeweils ohne oder mit Verwendung der Detektionsfunktion für subgingivalen Zahnstein bei einem unerfahrenen oder erfahrenen Behandler. Methode: Als Behandler dienten einerseits eine unerfahrene Studierende der Zahnmedizin aus dem ersten klinischen Jahr (STUDI) und auf der anderen Seite eine Dentalhygienikerin (PROFI) mit einer entsprechenden 12-jährigen Berufserfahrung. Bei dem untersuchten Ultraschallgerät PerioScan® (Sirona Dental Systems, Bensheim, Deutschland) handelt es sich um ein konventionelles, piezoelektrisches Ultraschallgerät (-DET) für die Entfernung supra- und subgingivaler Konkremente. Das Gerät verfügt zudem über eine spezielle Detektionsfunktion (+DET), die es dem Behandler ermöglicht ohne Instrumentenwechsel, nicht sichtbare, subgingivale Konkremente zu detektieren und direkt zu entfernen. Das neuentwickelte Modell verfügte über die Möglichkeit, extrahierte Zähne vergleichbar mit dem klinischen Vorgehen im Rahmen einer geschlossenen Parodontitistherapie ohne Einblick des Behandlers zu bearbeiten. Die Wurzeloberflächenbearbeitung konnte mittels des Modells ohne störende Einflüsse, wie einem Sprühnebel oder Trübungen, digital aufgezeichnet werden. Als Probenkörper dienten extrahierte humane Zähne, die in spezielle Haltevorrichtungen eingearbeitet wurden und so eine schnelle, unkomplizierte Bearbeitung als auch eine anschließende lichtmikroskopische Auswertung ermöglichten. Ergebnisse: Es konnte erfolgreich ein Modell für die Untersuchung des PerioScan® Ultraschallgerätes entwickelt und etabliert werden. Hinsichtlich des Abtrags von Konkrementen haben sowohl der STUDI als auch PROFI sowohl mit +DET als auch -DET einen deutlichen Abtrag erzielen können STUDI-DET: 29,8 %, STUDI+DET: 23,0 % und PROFI-DET: 15,3 %, PROFI+DET: 11,7 %. Hinsichtlich der Restkonkrementmenge oder Abtragsmenge gab es zwischen den Detektionsmethoden innerhalb der Behandler keine signifikanten Unterschiede. Die Unterschiede zwischen den Behandlern waren signifikant (p<0,05), so hat der STUDI unabhängig von der Detektionsmethode einen höheren Konkrementabtrag erzielt und ohne Detektion einen höheren Wert STUDI-DET: 9,6 %, PROFI-DET: 7,1 % für die Menge an Restkonkrementen. In Bezug auf die ursprünglich zur Verfügung stehende Konkrementmenge hatte der STUDI mit und ohne Detektionsfunktion einen vergleichbaren prozentualen Abtrag erzielt STUDI-DET: 73,3 %, STUDI+DET: 71,8 %. Der PROFI hat wiederum einen prozentualen Abtrag mit signifikanten Unterschied (p<0,05) hinsichtlich der Nutzung der Detektionsfunktion erzielt PROFI-DET: 76,5 %, PROFI+DET: 59,9 %. Zwischen den Behandlern gab es hinsichtlich des Abtrags keine signifikanten Unterschiede. Bei den benötigten Detektionszeiten gab es keinen signifikanten Unterschied bei der Nutzung der Detektionsfunktion STUDI-DET: 79,0 s, STUDI+DET: 73,0 s und PROFI- DET: 25,0 s, PROFI+DET: 20,5 s. Zwischen den Behandlern war der Unterschied zu Gunsten des PROFI unabhängig von der Detektionsmethode signifikant (p<0,05). Schlussfolgerung: Das in der Studie untersuchte Ultraschallgerät PerioScan® zeigt unabhängig von der Detektionsfunktion gute Abtragsleistungen bei der Reduktion subgingivalen Zahnsteins. Es konnten sowohl für einen unerfahrenen als auch erfahrenen Behandler keine signifikanten Vorteile hinsichtlich der Nutzung der Detektionsfunktion in Bezug auf die Restkonkrementmenge, Konkrementabtrag bzw. Detektionszeit ermittelt werden. Das entwickelte in vitro Modell eignet sich sehr gut, um die Wurzeloberflächenreinigung mit einem Ultraschallgerät zu untersuchen und zu dokumentieren. Eine Auswertung hinsichtlich der Sensitivität und Spezifität bedarf einiger weiterer Entwicklungsschritte, insbesondere bei der Lokalisation der Spitze und Auswertungssoftware.Background: The effective removal of bacterial and mineralized deposits from the root surface plays a fundamental role in the treatment of periodontal inflammation. The examination of the treatment success and localisation of subgingival calculus during a closed subgingival periodontal treatment is a challenge in daily practice, especially for young unexperienced colleagues. Innovations such as the in this study investigated ultrasonic scaler PerioScan® could offer new opportunities for root surface debridement. This device combines the detection of calculus on the root surface with its direct removal. Aim: The aim of the study was to develop a suitable in vitro model to analyse the ultrasonic device PerioScan®. The device should be examined in terms of sensitivity, specificity, calculus removal and detection time each without and with use of the detection mode for sub-gingival calculus for an inexperienced and experienced operator. Method: A student from the first clinical year (STUDI) served as an unexperienced operator. The experienced operator was represented by a dental hygienist (PROFI) with an appropriate long-standing professional experience. The studied ultrasonic device PerioScan® (Sirona Dental Systems, Bensheim, Germany) is a conventional piezoelectric ultrasonic device (-DET) for the removal of supra- and sub-gingival calculus. The addition of a special detection function (+DET) to the device allows the practitioner to detect invisible sub-gingival calculus and to remove it directly. The developed model enables the usage and treatment of extracted human teeth comparable with the clinical approach of a closed periodontal therapy without an insight by the operator. The root surface treatment could be digitally recorded using the model without disturbing influences, such as opacities or a cooling water mist. As specimen served extracted teeth that had been implemented into special holders that allowed a quick, simple treatment and a light-microscopic evaluation. Results: We successfully developed an appropriate model to study the PerioScan® ultrasonic device. The determination of the sensitivity and specificity was not feasible with in the given possibilities. Both the STUDI and the PROFI were able to reduce calculus, irrespective of DET activation. Related to the entire root surface they reached the following reductions: STUDI-DET: 29.8%, STUDI+DET: 23.0% and PROFI-DET: 15.3%, PROFI+DET: 11.7%. The differences between the detection methods within the practitioner were not significant with regard to the residual amount of calculus or quantity of removed calculus. The differences between the clinicians were significant (p<0.05). The STUDI achieved regardless of the detection method a higher calculus reduction and without detection a higher value STUDI-DET: 9.6%, PROFI-DET: 7.1% for the amount of residual calculus. In relation to the originally available amount of calculus, the STUDI achieved a comparable reduction, with or without DET: STUDI-DET: 73.3%, STUDI+DET: 71.8%. With -DET (76.5%), the PROFI achieved a significantly (p<0.05) better reduction compared to PROFI+DET: 59.9%. The differences between the operators with respect to the removal of calculus were not significant. Related to the detection time there were no significant differences in using the detection mode STUDI-DET: 79.0s, STUDI+DET: 73.0s and PROFI-DET: 25.0s, PROFI+DET: 20.5s. For all detection methods, detection times between the operators were significantly different (p<0.05). Conclusion: The ultrasonic device PerioScan® showed high removal rates in reducing sub-gingival calculus independent of the detection mode. There were no significant benefits using the detection mode with regard to the residual amount of calculus, calculus removal or detection time for an inexperienced or experienced operator. The developed in vitro model was suitable to investigate and record the treatment of root surfaces with an ultrasonic device. An evaluation in terms of sensitivity and specificity, requires further development steps; particularly with regard to the localisation of the tip and the evaluation software

    Enzymatic biofilm destabilisation to support mechanical cleansing of inserted dental implant surfaces: an in-vitro pilot study

    No full text
    Peri-implantitis is caused by microbial contamination and biofilm formation on the implant surface. To achieve re-osseointegration, the microbes must be completely removed from the surface. Adjunctive to mechanical cleaning, chemical treatment with enzymes or other substances could optimise the treatment outcome. Therefore, we investigated the efficacy of different enzymes, a surfactant, and a chelator in destabilising dental polymicrobial biofilm. The biofilm destabilising effect of the glycosidases α-amylase, dextranase, Dispersin

    Synergistic Effects of Nonthermal Plasma and Disinfecting Agents against Dental Biofilms In Vitro

    Get PDF
    Aim. Dental biofilms play a major role in the pathogenesis of many dental diseases. In this study, we evaluated the synergistic effect of atmospheric pressure plasma and different agents in dentistry on the reduction of biofilms. Methods and Results. We used monospecies (S. mutans) and multispecies dental biofilm models grown on titanium discs in vitro. After treatment with one of the agents, the biofilms were treated with plasma. Efficacy of treatment was determined by the number of colony forming units (CFU) and by live-dead staining. For S. mutans biofilms no colonies could be detected after treatment with NaOCl or H2O2. For multispecies biofilms the combination with plasma achieved a higher CFU reduction than each agent alone. We found an additive antimicrobial effect between argon plasma and agents irrespective of the treatment order with cultivation technique. For EDTA and octenidine, antimicrobial efficacy assessed by live-dead staining differed significantly between the two treatment orders (P < 0.05). Conclusions. The effective treatment of dental biofilms on titanium discs with atmospheric pressure plasma could be increased by adding agents in vitro

    Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.

    Get PDF
    INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy

    Atmospheric Pressure Plasma: A High-Performance Tool for the Efficient Removal of Biofilms

    Get PDF
    INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy
    corecore