11 research outputs found

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs

    The stiffness of living tissues and its implications for tissue engineering

    No full text
    The past 20 years have witnessed ever- growing evidence that the mechanical properties of biological tissues, from nanoscale to macroscale dimensions, are fundamental for cellular behaviour and consequent tissue functionality. This knowledge, combined with previously known biochemical cues, has greatly advanced the field of biomaterial development, tissue engineering and regenerative medicine. It is now established that approaches to engineer biological tissues must integrate and approximate the mechanics, both static and dynamic, of native tissues. Nevertheless, the literature on the mechanical properties of biological tissues differs greatly in methodology, and the available data are widely dispersed. This Review gathers together the most important data on the stiffness of living tissues and discusses the intricacies of tissue stiffness from a materials perspective, highlighting the main challenges associated with engineering lifelike tissues and proposing a unified view of this as yet unreported topic. Emerging advances that might pave the way for the next decadeâ s take on bioengineered tissue stiffness are also presented, and differences and similarities between tissues in health and disease are discussed, along with various techniques for characterizing tissue stiffness at various dimensions from individual cells to organs.The authors would like to acknowledge financial support from the European Research Council, grant agreement ERC-2012-ADG 20120216-321266 (project ComplexiTE). C.F.G. acknowledges scholarship grant no. PD/BD/135253/2017 from Fundação para a Ciência e Tecnologia (FCT). The authors also thank the peer-reviewers for the constructive comments and suggestions that helped to shape this manuscript

    The H1 detector at HERA

    No full text

    The Tracking, calorimeter and muon detectors of the H1 experiment at HERA

    No full text
    Technical aspects of the three major components of the H1 detector at the electron-proton storage ring HERA are described. This paper covers the detector status up to the end of 1994 when a major upgrading of some of its elements was undertaken. A description of the other elements of the detector and some performance figures from luminosity runs at HERA during 1993 and 1994 are given in a paper previously published in this journal.0400 auteursSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The tracking calorimeter and muon detectors of the H1 experiment at Hera

    No full text

    ATLAS calorimeter performance

    No full text
    corecore