49 research outputs found
SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs
Contrast-enhancement cardiac magnetic resonance imaging beyond the scope of viability
The clinical applications of cardiovascular magnetic resonance imaging with contrast enhancement are expanding. Besides the direct visualisation of viable and non-viable myocardium, this technique is increasingly used in a variety of cardiac disorders to determine the exact aetiology, guide proper treatment, and predict outcome and prognosis. In this review, we discuss the value of cardiovascular magnetic resonance imaging with contrast enhancement in a range of cardiac disorders, in which this technique may provide insights beyond the scope of myocardial viability
Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance.
The assessment of post-myocardial infarction (MI) left ventricular (LV) remodeling by cardiovascular magnetic resonance (CMR) currently uses criteria defined by echocardiography. Our aim was to provide CMR criteria for assessing LV remodeling following acute MI.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
Self-gated free-breathing 3D coronary CINE imaging with simultaneous water and fat visualization
The aim of this study was to develop a novel technique for acquiring 3-dimensional (3D) coronary CINE magnetic resonance images with both water and fat visualization during free breathing and without external respiratory or cardiac gating. The implemente
Prognostic utility of differential tissue characterization of cardiac neoplasm and thrombus via late gadolinium enhancement cardiovascular magnetic resonance among patients with advanced systemic cancer
Abstract Background Late gadolinium enhancement (LGE-) cardiovascular magnetic resonance (CMR) is well-validated for cardiac mass (CMASS) tissue characterization to differentiate neoplasm (CNEO) from thrombus (CTHR): Prognostic implications of CMASS subtypes among systemic cancer patients are unknown. Methods CMASS + patients and controls (CMASS -) matched for cancer diagnosis and stage underwent a standardized CMR protocol, including LGE-CMR (IR-GRE) for tissue characterization and balanced steady state free precession cine-CMR (SSFP) for cardiac structure/function. CMASS subtypes (CNEO, CTHR) were respectively defined by presence or absence of enhancement on LGE-CMR; lesions were quantified for tissue properties (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR) and size. Clinical follow-up was performed to evaluate prognosis in relation to CMASS etiology. Results The study population comprised 126 patients with systemic neoplasms referred for CMR, of whom 50% (n = 63) had CMASS + (CNEO = 32%, CTHR = 18%). Cancer etiology differed between CNEO (sarcoma = 20%, lung = 18%) and CTHR (lymphoma = 30%, GI = 26%); cardiac function (left ventricular ejection fraction: 63 ± 9 vs. 62 ± 10%; p = 0.51∣ right ventricular ejection fraction: 53 ± 9 vs. 54 ± 8%; p = 0.47) and geometric indices were similar (all p = NS). LGE-CMR tissue properties assessed by CNR (13.1 ± 13.0 vs. 1.6 ± 1.0; p < 0.001) and SNR (29.7 ± 20.4 vs. 15.0 ± 11.4, p = 0.003) were higher for CNEO, consistent with visually-assigned diagnostic categories. CTHR were more likely to localize to the right atrium (78% vs. 25%, p < 0.001); nearly all (17/18) were associated with central catheters. Lesion size (17.3 ± 23.8 vs. 2.0 ± 1.5 cm2; p < 0.001) was greater with CNEO vs. CTHR, as was systemic disease burden (cancer-involved organs: 3.6 ± 2.0 vs. 2.3 ± 2.1; p = 0.02). Mortality during a median follow-up of 2.5 years was markedly higher among patients with CNEO compared to those with CTHR (HR = 3.13 [CI 1.54–6.39], p = 0.002); prognosis was similar when patients were stratified by lesion size assessed via area (HR = 0.99 per cm2 [CI 0.98–1.01], p = 0.40) or maximal diameter (HR = 0.98 per cm [CI 0.91–1.06], p = 0.61). CTHR conferred similar mortality risk compared to cancer-matched controls without cardiac involvement (p = 0.64) whereas mortality associated with CNEO was slightly higher albeit non-significant (p = 0.12). Conclusions Among a broad cancer cohort with cardiac masses, CNEO defined by LGE-CMR tissue characterization conferred markedly poorer prognosis than CTHR, whereas anatomic assessment via cine-CMR did not stratify mortality risk. Both CNEO and CTHR are associated with similar prognosis compared to CMASS - controls matched for cancer type and disease extent