1,613 research outputs found

    Moment-Generating Algorithm for Response Time in Processor Sharing Queueing Systems

    No full text
    Response times are arguably the most representative and important metric for measuring the performance of modern computer systems. Further, service level agreements (SLAs), ranging from data centres to smartphone users, demand quick and, equally important, predictable response times. Hence, it is necessary to calculate moments, at least, and ideally response time distributions, which is not straightforward. A new moment-generating algorithm for calculating response times analytically is obtained, based on M/M/1 processor sharing (PS) queueing models. This algorithm is compared against existing work on response times in M/M/1-PS queues and extended to M/M/1 discriminatory PS queues. Two real-world case studies are evaluated

    Asymptotic Expansions for the Sojourn Time Distribution in the M/G/1M/G/1-PS Queue

    Full text link
    We consider the M/G/1M/G/1 queue with a processor sharing server. We study the conditional sojourn time distribution, conditioned on the customer's service requirement, as well as the unconditional distribution, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. Our results demonstrate the possible tail behaviors of the unconditional distribution, which was previously known in the cases G=MG=M and G=DG=D (where it is purely exponential). We assume that the service density decays at least exponentially fast. We use various methods for the asymptotic expansion of integrals, such as the Laplace and saddle point methods.Comment: 45 page

    Memory-encoding vibrations in a disconnecting air bubble

    Get PDF
    Many nonlinear processes, such as the propagation of waves over an ocean or the transmission of light pulses down an optical fibre1, are integrable in the sense that the dynamics has as many conserved quantities as there are independent variables. The result is a time evolution that retains a complete memory of the initial state. In contrast, the nonlinear dynamics near a finite-time singularity, in which physical quantities such as pressure or velocity diverge at a point in time, is believed to evolve towards a universal form, one independent of the initial state2. The break-up of a water drop in air3 or a viscous liquid inside an immiscible oil4,5 are processes that conform to this second scenario. These opposing scenarios collide in the nonlinearity produced by the formation of a finite-time singularity that is also integrable. We demonstrate here that the result is a novel dynamics with a dual character

    Isolation and Mutagenesis of a Capsule-Like Complex (CLC) from Francisella tularensis, and Contribution of the CLC to F. tularensis Virulence in Mice

    Get PDF
    BACKGROUND: Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS: A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS: Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain

    Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Get PDF
    In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. Cyclophilin A (CypA), a peptidyl-prolyl <it>cis-trans </it>isomerase (PPIase), is a host factor essential for efficient replication of human immunodeficiency virus type 1 (HIV-1) in human cells. However, the role of cyclophilins in simian immunodeficiency virus (SIV) replication has not been determined. In the present study, we examined the effect of cyclosporine A (CsA), a PPIase inhibitor, on SIV replication.</p> <p>Results</p> <p>SIV replication in human CEM-SS T cells was not inhibited but rather enhanced by treatment with CsA, which inhibited HIV-1 replication. CsA treatment of target human cells enhanced an early step of SIV replication. CypA overexpression enhanced the early phase of HIV-1 but not SIV replication, while CypA knock-down resulted in suppression of HIV-1 but not SIV replication in CEM-SS cells, partially explaining different sensitivities of HIV-1 and SIV replication to CsA treatment. In contrast, CsA treatment inhibited SIV replication in macaque T cells; CsA treatment of either virus producer or target cells resulted in suppression of SIV replication. SIV infection was enhanced by CypA overexpression in macaque target cells.</p> <p>Conclusions</p> <p>CsA treatment enhanced SIV replication in human T cells but abrogated SIV replication in macaque T cells, implying a host cell species-specific effect of CsA on SIV replication. Further analyses indicated a positive effect of CypA on SIV infection into macaque but not into human T cells. These results suggest possible contribution of CypA to the determination of SIV tropism.</p

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
    • …
    corecore