173 research outputs found

    Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review

    Get PDF
    OBJECTIVE: Post-translational modifications of fibrinogen influence the occurrence and progression of thrombotic diseases. In this systematic review, we assessed the current literature on post-translational modifications of fibrinogen and their effects on fibrin formation and clot characteristics. Approach and Results: A systematic search of Medline, Embase, Cochrane Library, and Web of Science was performed to find studies reporting post-translational modifications of fibrinogen and the effects on clot formation and structure. Both in vitro studies and ex vivo studies using patient material were included. One hundred five articles were included, describing 11 different modifications of fibrinogen. For the best known and studied modifications, conclusions could be drawn about their effect on clot formation and structure. Oxidation, high levels of nitration, and glycosylation inhibit the rate of polymerization, resulting in dense clots with thinner fibers, while low levels of nitration increase the rate of polymerization. Glycation showed different results for polymerization, but f

    Suppression of low-density lipoprotein oxidation, vascular smooth muscle cell proliferation and migration by a herbal extract of Radix Astragali, Radix Codonopsis and Cortex Lycii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a major cause of death in developed world. Atherosclerosis is characterized by low-density lipoprotein deposition in the arterial wall which ultimately begets the formation of lesions. Rupture of lesions finally leads to clinical events such as heart attack and stroke. Atherosclerosis is a complication associated with diabetes. In patients with diabetes, the risk of atherosclerosis is three to five folds greater than in non-diabetics. Our previous study showed that a herbal extract of <it>Radix Astragali, Radix Codonopsis </it>and <it>Cortex Lycii</it>, namely SR10, could improve glucose homeostasis both <it>in vitro </it>and <it>in vivo</it>. In this study, we want to further investigate the efficacy of SR10 in treating atherosclerosis.</p> <p>Method</p> <p>The inhibitory effect of SR10 on low-density lipoprotein oxidation was investigated using free radical-induced erythrocyte hemolysis model and copper ion-induced low-density lipoprotein oxidation model. Since vascular smooth muscle cell proliferation and migration are important processes in atherogenesis, we also examined the effect of SR10 in inhibiting these events.</p> <p>Results</p> <p>Our results showed that SR10 inhibited erythrocyte hemolysis with IC<sub>50 </sub>value at 0.25 mg/ml and significantly prolonged low-density lipoprotein oxidation <it>in vitro</it>. SR10 attenuated platelet derived growth factor-BB-induced vascular smooth muscle cell proliferation by promoting cell cycle arrest at G<sub>0</sub>/G<sub>1 </sub>phase as well as inhibiting vascular smooth muscle cell migration.</p> <p>Conclusion</p> <p>The potential application of SR10 in treating atherosclerosis has been implied in this study. Animal model will be needed to further verify the efficacy of SR10 in future.</p

    Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: Impact of dietary intake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood of cigarette smokers routinely displays decreased antioxidant capacity and increased oxidized lipids compared to nonsmokers. This is thought to be due to both chronic exposure to cigarette smoke in addition to low intake of dietary antioxidants, and is a routine finding in veteran smokers. No study to date has determined the independent and combined impact of dietary intake and cigarette smoking on blood antioxidant capacity and oxidative stress in a sample of young, novice smokers.</p> <p>Methods</p> <p>We compared resting plasma antioxidant reducing capacity (ARC; expressed in uric acid equivalents), serum trolox-equivalent antioxidant capacity (TEAC), whole blood total glutathione, plasma malondialdehyde (MDA), and plasma oxidized low density lipoprotein (oxLDL) between 15 young (24 ± 4 years), novice smokers (pack-year history: 3 ± 2) and 13 nonsmokers of similar age (24 ± 5 years). Detailed dietary records were maintained during a seven-day period for analysis of total energy, macro- and micronutrient intake.</p> <p>Results</p> <p>ARC (0.0676 ± 0.0352 vs. 0.1257 ± 0.0542 mmol·L<sup>-1</sup>; mean ± SD, p = 0.019), TEAC (0.721 ± 0.120 vs. 0.765 ± 0.130 mmol·L<sup>-1</sup>, p = 0.24) and glutathione (835 ± 143 vs. 898 ± 168 μmol·L<sup>-1</sup>, p = 0.28) were lower in smokers compared to nonsmokers, with only the former being statistically significant. MDA (0.919 ± 0.32 vs. 0.647 ± 0.16 μmol·L<sup>-1</sup>, p = 0.05) and oxLDL were both higher in smokers compared to nonsmokers (229 ± 94 vs. 110 ± 62 ng·mL<sup>-1</sup>, p = 0.12), although only the MDA comparison was of statistical significance. Interestingly, these findings existed despite no differences in dietary intake, including antioxidant micronutrient consumption, between both smokers and nonsmokers.</p> <p>Conclusion</p> <p>These data, with specificity to young, novice cigarette smokers, underscore the importance of smoking abstinence. Future studies with larger sample sizes, inclusive of smokers of different ages and smoking histories, are needed to extend these findings.</p

    Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin

    Get PDF
    In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as ‘strong’ (e.g. thrombin and collagen) or ‘mild’ (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since ‘strong’ stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to ‘mild’ stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD

    Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina

    Get PDF
    Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions

    Molecular Etiology of Atherogenesis – In Vitro Induction of Lipidosis in Macrophages with a New LDL Model

    Get PDF
    BACKGROUND: Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. METHODOLOGY/PRINCIPAL FINDINGS: Lipid "core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in "frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. CONCLUSIONS/SIGNIFICANCE: The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents

    Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice

    Get PDF
    BACKGROUND: Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. METHODS: We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. RESULTS: In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. CONCLUSION: Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation

    How do high glycemic load diets influence coronary heart disease?

    Get PDF
    corecore